杜教筛

适用条件

  1. 你要能构造出\(g(x),h(x)\),使得\(h=f*g\)。

  2. \(G(x),H(x)\)的值可以快速计算。

过程

我们要求的是\(F(n)=\sum_{i=1}^{n}f(i)\),现在有\(h=f*g\),\(G(x),H(x)\)分别为\(g(x),h(x)\)的前缀和。

\[
\begin{aligned}
H(n)=&\sum_{i=1}^{n}h(i)\\
=&\sum_{i=1}^{n}\sum_{d|i}f(\frac{i}{d})g(d)\\
=&\sum_{d=1}^{n}g(d)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}f(i)\\
=&\sum_{d=1}^{n}g(d)F(\lfloor \frac{n}{d} \rfloor)\\
g(1)F(n)=H(n)-&\sum_{d=2}^{n}g(d)F(\lfloor \frac{n}{d} \rfloor)
\end{aligned}
\]

通过线性筛预处理出前\(n^{\frac{2}{3}}\)的前缀和,加上记忆化,可以做到\(O(n^{\frac{2}{3}})\)的时间复杂度。

min_25筛

适用条件

  1. \(f(P)\)的值是一个关于\(P\)的多项式。

  2. \(f(P^Q)\)的值可以快速计算。

  3. 当然,\(f(x)\)必须是一个积性函数。

原理

先咕了,咕咕咕。

第一次处理

假设\(f'(x)=x^k\),令\(g[P_i][x]\)表示所有\(f'(y)\)的和,其中\(1 \leq y \leq x\),\(y\)是质数或者\(y\)的最小质因子大于\(P_i\),有这样的递推式:

\[g[P_i][x]=g[P_{i-1}][x]-f'(P_i)(g[P_{i-1}][\lfloor\frac{x}{P_i}\rfloor]-\sum_{j=1}^{i-1}f'(P_j)),\ x \geq P_i^2\]

\[g[P_i][x]=g[P_{i-1}][x],\ x < P_i^2\]

\(g[P_i][x]\)的第一维可以使用滚动数组优化掉,时间复杂度为\(O(\frac{n^{\frac{3}{4}}}{\log n})\)。

第二次处理

为了方便,这里使用\(g[x]\)表示\(g[P_{cnt}][x]\)(\(cnt\)表示质数个数)。

令\(S(x,P_i)\)表示所有\(f(y)\)的和,其中\(1 \leq y \leq x\),\(y\)的最小质因子大于等于\(P_i\),有:

\[S(x,P_i)=g[x]-\sum_{j=1}^{i-1}f(P_j)+\sum_{j=i}^{P_j^2 \leq x}\sum_{k=1}^{P_j^{k+1} \leq x}f(P_j^k)S(\lfloor\frac{x}{p_j^k}\rfloor,P_{j+1})+f(P_j^{k+1})\]

这里无需记忆化,直接递归计算即可,时间复杂度为\(O(\frac{n^{\frac{3}{4}}}{\log n})\)。

杜教筛&min_25筛复习的更多相关文章

  1. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  2. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  3. 洲阁筛 & min_25筛学习笔记

    洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = ...

  4. 【51NOD1847】奇怪的数学题 min_25筛

    题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\) ...

  5. 51nod1847 奇怪的数学题 (Min_25筛+第二类斯特林数)

    link \(\sum_{i=1}^n\sum_{j=1}^n\mathrm{sgcd}(i,j)^k=\sum_{p=1}^ns(p)^k\sum_{i=1}^n\sum_{j=1}^n[\gcd( ...

  6. min_25筛入门

    目录 1.什么是min_25筛 2.前置知识 2.1.数论函数 2.2.埃拉托色尼筛 2.3.欧拉筛 3.min_25筛 3.1.计算质数贡献 3.2.计算总贡献 3.3.实现 4.例题 4.1.[L ...

  7. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  8. 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)

    [LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...

  9. LOJ572. 「LibreOJ Round #11」Misaka Network 与求和 [莫比乌斯反演,杜教筛,min_25筛]

    传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d ...

随机推荐

  1. Java第六周课堂示例总结

    一.如果一个类中既有初始化块,又有构造方法,同时还设定了字段的初始值,谁说了算? public class InitializeBlockDemo { /** * @param args */ pub ...

  2. 公司SQL考核及小结(Oracle)

    一.数据库初始化脚本: Create TABLE HAND_CUSTOMERS ( CUSTOMERS_NO ), CUSTOMERS_NAME ), CUSTOMERS_GENDER ), CUST ...

  3. div+css布局教程(1)

    margin:Margin属性用于设置两个元素之间的距离. 后面如果只有两个参数的话,第一个表示top和bottom,第二个表示left和right因为0 auto,表示上下边界为0,左右则根据宽度自 ...

  4. 第四章 子查询 T-SQL语言基础

    子查询 SQL支持在查询语句中编写查询,或者嵌套其他查询. 最外层查询的结果集会返回给调用者,称为外部查询. 内部查询的结果是供外部查询使用的,也称为子查询. 子查询可以分为独立子查询和相关子查询.独 ...

  5. O017、部署DevStack

    参考https://www.cnblogs.com/CloudMan6/p/5357273.html   本节按照以下步骤部署 DevStack 实验环境,包括控制节点和计算节点.详细的部署和配置可以 ...

  6. GitLab: Deploy keys are not allowed to push code.

    被这个问题坑了,大半天.写此博文,愿入坑的童鞋能及时托坑 一.当你第一次pull或者push gitlab远程项目的时候提示你一个该建立一个sshkey,此时你在客户端生成sshkey 二.切记要把这 ...

  7. Django实现websocket完成实时通讯

    一 什么是Websocket WebSocket是一种在单个TCP连接上进行全双工通信的协议 WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据.在WebS ...

  8. python 定义变量

    定义变量 什么是变量? 在程序运行过程中,其值可以改变的量 标识符(命令规范) 只能由数字.字母.下划线组成 不能以数字开头 不能是系统关键字 # 导入包import keyword​# 打印所有关键 ...

  9. NativeScript —— 初级入门(跨平台的手机APP应用)《二》

    NativeScript项目结构 根文件夹 package.json —— 这是适用于整个应用程序的NativeScript主项目配置文件. 它基本概述了项目的基本信息和所有平台要求. 当您添加和删除 ...

  10. Tensorflow模型移植Arm之一:C与Python互相调用

    一.C调用Python 1.新建一个Python文件,名称为py_multipy.py: #import numpy as np def multiply(a=1,b=2): print('Funct ...