Petrozavodsk Winter-2018. AtCoder Contest. Problem I. ADD, DIV, MAX 吉司机线段树
题意:给你一个序列,需要支持以下操作:1:区间内的所有数加上某个值。2:区间内的所有数除以某个数(向下取整)。3:询问某个区间内的最大值。
思路(从未见过的套路):维护区间最大值和区间最小值,执行2操作时,继续向下寻找子区间,如果区间满足:min - (min / x) == max - (max / x)时,给这个区间内的所有数减去min - (min / x)就可以了。为什么这样做呢?因为向下取整操作变化速度远快于加法,在经过很多次操作后其实序列中的数区域相等,复杂度需要用势能分析之类的,均摊复杂度应该是O(n * (log(n) ^ 2))。
代码:
#include <bits/stdc++.h>
#define LL long long
#define ls (o << 1)
#define rs (o << 1 | 1)
using namespace std;
const int maxn = 200010;
struct Seg {
LL add, mx, mi;
};
Seg tr[maxn * 4];
LL a[maxn]; void pushup(int o) {
tr[o].mx = max(tr[ls].mx, tr[rs].mx);
tr[o].mi = min(tr[ls].mi, tr[rs].mi);
} void pushdown(int o) {
if(tr[o].add != 0) {
tr[ls].add += tr[o].add;
tr[ls].mi += tr[o].add;
tr[ls].mx += tr[o].add;
tr[rs].add += tr[o].add;
tr[rs].mi += tr[o].add;
tr[rs].mx += tr[o].add;
tr[o].add = 0;
}
} void dfs(int o, int l, int r, LL val) {
if(tr[o].mi - (tr[o].mi / val) == tr[o].mx - (tr[o].mx / val)) {
LL tmp = tr[o].mi - (tr[o].mi / val);
tr[o].add -= tmp;
tr[o].mi -= tmp;
tr[o].mx -= tmp;
return;
}
int mid = (l + r) >> 1;
pushdown(o);
dfs(ls, l, mid, val);
dfs(rs, mid + 1, r, val);
pushup(o);
} void build(int o, int l, int r) {
if(l == r) {
tr[o].add = 0;
tr[o].mx = tr[o].mi = a[l];
return;
}
int mid = (l + r) >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
pushup(o);
} void update(int o, int l, int r, int ql, int qr, LL val, bool flag) {
if(l >= ql && r <= qr) {
if(flag == 0) {
tr[o].mi += val;
tr[o].mx += val;
tr[o].add += val;
} else {
dfs(o, l, r, val);
}
return;
}
pushdown(o);
int mid = (l + r) >> 1;
if(ql <= mid) update(ls, l, mid, ql, qr, val, flag);
if(qr > mid) update(rs, mid + 1, r, ql, qr, val, flag);
pushup(o);
} LL query(int o, int l, int r, int ql, int qr) {
if(l >= ql && r <= qr) {
return tr[o].mx;
}
int mid = (l + r) >> 1;
LL ans = 0;
pushdown(o);
if(ql <= mid) ans = max(ans, query(ls, l, mid, ql, qr));
if(qr > mid) ans = max(ans, query(rs, mid + 1, r, ql, qr));
return ans;
} int main() {
int op, l, r, x, n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
}
build(1, 1, n);
for (int i = 1; i <= m; i++) {
scanf("%d", &op);
if(op == 0) {
scanf("%d%d%d", &l, &r, &x);
l++, r++;
update(1, 1, n, l, r, x, 0);
} else if(op == 1) {
scanf("%d%d%d", &l, &r, &x);
l++, r++;
if(x != 1)
update(1, 1, n, l, r, x, 1);
} else {
scanf("%d%d%d", &l, &r, &x);
l++, r++;
printf("%lld\n", query(1, 1, n, l, r));
}
}
}
Petrozavodsk Winter-2018. AtCoder Contest. Problem I. ADD, DIV, MAX 吉司机线段树的更多相关文章
- 2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest)
2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest) Problem A. M ...
- AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图
AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...
- 2018.07.30 cogs2632. [HZOI 2016] 数列操作d(线段树)
传送门 线段树基本操作 区间加等差数列,维护区间和. 对于每个区间维护等差数列首项和公差,易证这两个东西都是可合并的,然后使用小学奥数的知识就可以切掉这题. 代码: #include<bits/ ...
- 2018.07.25 bzoj3878: [Ahoi2014&Jsoi2014]奇怪的计算器(线段树)
传送门 线段树综合. 让我想起一道叫做siano" role="presentation" style="position: relative;"&g ...
- BNU 28887——A Simple Tree Problem——————【将多子树转化成线段树+区间更新】
A Simple Tree Problem Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on ZJU. O ...
- POJ3468A Simple Problem with Integers(区间加数求和 + 线段树)
题目链接 题意:两种操作:一是指定区间的数全都加上一个数,二是统计指定区间的和 参考斌神的代码 #include <iostream> #include <cstring> # ...
- 2018.08.04 cogs2633. [HZOI 2016]数列操作e(线段树)
传送门 支持区间加w(i−ql+1)2" role="presentation" style="position: relative;">w(i ...
- 2018.12.23 bzoj2865&&1396: 字符串识别(后缀自动机+线段树)
传送门 卡空间差评! 题意简述:给一个字串,对于每个位置求出经过这个位置且只在字串中出现一次的子串的长度的最小值. 解法:先建出samsamsam,显然只有当sizep=1size_p=1sizep ...
- 2018.11.01 loj#2319. 「NOIP2017」列队(线段树)
传送门 唉突然回忆起去年去noipnoipnoip提高组试水然后省二滚粗的悲惨经历... 往事不堪回首. 所以说考场上真的有debuffdebuffdebuff啊!!!虽然当时我也不会权值线段树 这道 ...
随机推荐
- 170817关于Listener的知识点
1. Listener 监听器简介 Listener是JavaWeb中三大组件之一.Servlet.Filter.Listener ...
- 如何降低Vue.js项目中Webpack打包文件的大小?
https://blog.csdn.net/maray/article/details/50988500?utm_source=blogxgwz0 import Blur from ‘vux/src/ ...
- node.js配置环境变量
今天配置node.js的时候,碰到了配置环境变量的问题 为什么会出这样的问题: 因为我将 node.js 安装到了D盘,(这是个坑,以后一定要安到C盘),当我发现,我的node操作指令无效的时候,知道 ...
- 高通Camera驱动分析【转】
本文转载自:http://blog.csdn.net/liwei16611/article/details/53955711 1.Sensor slave配置 结构体msm_camera_sensor ...
- daemon(守护、服务员)-t1.setDaemon(true) - 设置为守护线程
daemon(守护.服务员)t1.setDaemon(true) - 设置为守护线程 class KTV extends Thread{ public void run(){ try { Thread ...
- 错误 warning: LF will be replaced by CRLF in README.md.
问题类型 windows中的换行符为 CRLF, 而在Linux下的换行符为LF,所以在执行add . 时出现提示:warning: LF will be replaced by CRLF in RE ...
- C# out 和 ref 区别
C#里面的 out 和ref参数时常会用到 记录一下: public void Start() { //outSum没必要赋值,赋值了也完全没用. //如果AddByOut函数内部直接使用out对应的 ...
- Delphi XE2 之 FireMonkey 入门(25) - 数据绑定: TBindingsList: 表达式的灵活性及表达式函数
Delphi XE2 之 FireMonkey 入门(25) - 数据绑定: TBindingsList: 表达式的灵活性及表达式函数 绑定表达式中可以有简单的运算和字符串连接, 但字符串需放在双引号 ...
- abstract 和 interface 抽象类和接口的区别
初版:以后再整理. 接口是公开的,里面不能有私有的方法或变量,是用于让别人使用的,而抽象类是可以有私有方法或私有变量的, 另外,实现接口的一定要实现接口里定义的所有方法,而实现抽象类可以有选择地重写需 ...
- VUE 全局监听sessionStorage变化
在做项目的时候,可能需要在其他模块获取推送的信息或者变量,但是数据量或者说数目少,而且项目中也没有引用VUEX,那么可以下手的方法之一也就是sessionStorage类的浏览器存储了. 首先在全局的 ...