LDA(Latent Dirichlet Allocation)主题模型算法
LDA整体流程
先定义一些字母的含义:
- 文档集合D,topic集合T
- D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词。(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响)
- D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC)
LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词):
- 对每个D中的文档d,对应到不同topic的概率θd <
pt1,..., ptk >,其中,pti表示d对应T中第i个topic的概率。计算方法是直观的,pti=nti/n,其中nti表示d中对应第i个topic的词的数目,n是d中所有词的总数。 - 对每个T中的topic t,生成不同单词的概率φt <
pw1,..., pwm >,其中,pwi表示t生成VOC中第i个单词的概率。计算方法同样很直观,pwi=Nwi/N,其中Nwi表示对应到topic
t的VOC中第i个单词的数目,N表示所有对应到topic t的单词总数。
LDA的核心公式如下:
p(w|d) = p(w|t)*p(t|d)
直观的看这个公式,就是以Topic作为中间层,可以通过当前的θd和φt给出了文档d中出现单词w的概率。其中p(t|d)利用θd计算得到,p(w|t)利用φt计算得到。
实际上,利用当前的θd和φt,我们可以为一个文档中的一个单词计算它对应任意一个Topic时的p(w|d),然后根据这些结果来更新这个词应该对应的topic。然后,如果这个更新改变了这个单词所对应的Topic,就会反过来影响θd和φt。
LDA学习过程
LDA算法开始时,先随机地给θd和φt赋值(对所有的d和t)。然后上述过程不断重复,最终收敛到的结果就是LDA的输出。再详细说一下这个迭代的学习过程:
1)针对一个特定的文档ds中的第i单词wi,如果令该单词对应的topic为tj,可以把上述公式改写为:
pj(wi|ds)
= p(wi|tj)*p(tj|ds)
先不管这个值怎么计算(可以先理解成直接从θds和φtj中取对应的项。实际没这么简单,但对理解整个LDA流程没什么影响,后文再说)。
2)现在我们可以枚举T中的topic,得到所有的pj(wi|ds),其中j取值1~k。然后可以根据这些概率值结果为ds中的第i个单词wi选择一个topic。最简单的想法是取令pj(wi|ds)最大的tj(注意,这个式子里只有j是变量),即
argmax[j]pj(wi|ds)
当然这只是一种方法(好像还不怎么常用),实际上这里怎么选择t在学术界有很多方法,我还没有好好去研究。
3)然后,如果ds中的第i个单词wi在这里选择了一个与原先不同的topic,就会对θd和φt有影响了(根据前面提到过的这两个向量的计算公式可以很容易知道)。它们的影响又会反过来影响对上面提到的p(w|d)的计算。对D中所有的d中的所有w进行一次p(w|d)的计算并重新选择topic看作一次迭代。这样进行n次循环迭代之后,就会收敛到LDA所需要的结果了。
LDA(Latent Dirichlet Allocation)主题模型算法的更多相关文章
- LDA(Latent Dirichlet allocation)主题模型
LDA是一种典型的词袋模型,即它认为一篇文档是由一组词构成的一个集合,词与词之间没有顺序以及先后的关系.一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 它是一种主题模型,它可以将文档 ...
- JGibbLDA:java版本的LDA(Latent Dirichlet Allocation)实现、修改及使用
转载自:http://blog.csdn.net/memray/article/details/16810763 一.概述 JGibbLDA是一个java版本的LDA(Latent Dirichl ...
- LDA(latent dirichlet allocation)
1.LDA介绍 LDA假设生成一份文档的步骤如下: 模型表示: 单词w:词典的长度为v,则单词为长度为v的,只有一个分量是1,其他分量为0的向量 $(0,0,...,0,1,0,... ...
- Latent Dirichlet Allocation 文本分类主题模型
文本提取特征常用的模型有:1.Bag-of-words:最原始的特征集,一个单词/分词就是一个特征.往往一个数据集就会有上万个特征:有一些简单的指标可以帮助筛选掉一些对分类没帮助的词语,例如去停词,计 ...
- [综] Latent Dirichlet Allocation(LDA)主题模型算法
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&§ionid=983 二项分布和多项分布 http:// ...
- LDA( Latent Dirichlet Allocation)主题模型 学习报告
1 问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一 ...
- 转:关于Latent Dirichlet Allocation及Hierarchical LDA模型的必读文章和相关代码
关于Latent Dirichlet Allocation及Hierarchical LDA模型的必读文章和相关代码 转: http://andyliuxs.iteye.com/blog/105174 ...
- Spark:聚类算法之LDA主题模型算法
http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利 ...
- Spark机器学习(8):LDA主题模型算法
1. LDA基础知识 LDA(Latent Dirichlet Allocation)是一种主题模型.LDA一个三层贝叶斯概率模型,包含词.主题和文档三层结构. LDA是一个生成模型,可以用来生成一篇 ...
随机推荐
- Hyperledger Fabric(3)通道与组织
1,通道的结构 通道是Fabric中非常重要的概念(类似微信群?),它实质是由排序节点划分和管理的私有原子广播通道,目的是对通道的信息进行隔离,使得通道外的实体无法访问通道内的信息,从而实现交易的隐私 ...
- 学习.NET中的AppDomain
学习.NET中的AppDomain 什么是AppDomain?AppDomain是一组程序集的逻辑容器,AppDomain是为了提供隔离而设计的.它提供了保护.配置和终止其中每一个应用程序的隔离 Ap ...
- 从Spring看Web项目开发
之前简单介绍过Spring框架,本文换个角度重新诠释Spring.使用Java语言开发的项目,几乎都绕不过Spring,那么Spring到底是啥,为何被如此广泛的应用,下面从以下两个问题出发来剖析Sp ...
- Mongodb的锁 原子性 隔离性 一致性
读写锁 Mongodb使用读写锁来来控制并发操作: 当进行读操作的时候会加读锁,这个时候其他读操作可以也获得读锁.但是不能或者写锁. 当进行写操作的时候会加写锁,这个时候不能进行其他的读操作和写操作. ...
- visudo修改编辑器vim
update-alternatives --config editor
- Django-csrf中间件
一.详解csrf原理 csrf要求发送post,put,或者delete请求的时候,是先以get方式发送请求,服务端响应时会分配一个随机字符串给客户端,客户端第二次发送post,put或delete请 ...
- Linux设备驱动学习笔记
之前研究Linux设备驱动时做的零零散散的笔记,整理出来,方便以后复习. 1.1驱动程序的的角色 提供机制 例如:unix图形界面分为X服务器和窗口会话管理器 X服务器理解硬件及提供统一的接口给用户程 ...
- eclipse导入tomcat时Unknown version of Tomcat was specified
Unknown version of Tomcat was specified 的原因有2种可能: 1 路径不是真正的路径,可能是其子路径,要找到bin路径. 2 安装目录没有访问权限. 我的就是第2 ...
- 在CentOS/Windows下配置Nginx(以及踩坑)
在CentOS/Windows下配置Nginx(以及踩坑) 1. 序言 因为这类文章网上比较多,实际操作起来也大同小异,所以我并不会着重于详细配置方面,而是将我配置时踩的坑写出来. 2. CentOS ...
- 数组 slice方法和splice方法的区别
一.slice() 方法 slice()方法可以从已有的数组中返回选定的元素. 语法: arrayObject.slice(start,end) 参数: start:(截取开始位置的索引,包含开始索引 ...