原文

LDA整体流程

先定义一些字母的含义:

  • 文档集合D,topic集合T
  • D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词。(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响)
  • D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC)

LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词):

  • 对每个D中的文档d,对应到不同topic的概率θd <
    pt1,..., ptk >,其中,pti表示d对应T中第i个topic的概率。计算方法是直观的,pti=nti/n,其中nti表示d中对应第i个topic的词的数目,n是d中所有词的总数。
  • 对每个T中的topic t,生成不同单词的概率φt <
    pw1,..., pwm >,其中,pwi表示t生成VOC中第i个单词的概率。计算方法同样很直观,pwi=Nwi/N,其中Nwi表示对应到topic
    t的VOC中第i个单词的数目,N表示所有对应到topic t的单词总数。

LDA的核心公式如下:

p(w|d) = p(w|t)*p(t|d)

直观的看这个公式,就是以Topic作为中间层,可以通过当前的θd和φt给出了文档d中出现单词w的概率。其中p(t|d)利用θd计算得到,p(w|t)利用φt计算得到。

实际上,利用当前的θd和φt,我们可以为一个文档中的一个单词计算它对应任意一个Topic时的p(w|d),然后根据这些结果来更新这个词应该对应的topic。然后,如果这个更新改变了这个单词所对应的Topic,就会反过来影响θd和φt

LDA学习过程

LDA算法开始时,先随机地给θd和φt赋值(对所有的d和t)。然后上述过程不断重复,最终收敛到的结果就是LDA的输出。再详细说一下这个迭代的学习过程:

1)针对一个特定的文档ds中的第i单词wi,如果令该单词对应的topic为tj,可以把上述公式改写为:

pj(wi|ds)
= p(wi|tj)*p(tj|ds)

先不管这个值怎么计算(可以先理解成直接从θds和φtj中取对应的项。实际没这么简单,但对理解整个LDA流程没什么影响,后文再说)。

2)现在我们可以枚举T中的topic,得到所有的pj(wi|ds),其中j取值1~k。然后可以根据这些概率值结果为ds中的第i个单词wi选择一个topic。最简单的想法是取令pj(wi|ds)最大的tj(注意,这个式子里只有j是变量),即

argmax[j]pj(wi|ds)

当然这只是一种方法(好像还不怎么常用),实际上这里怎么选择t在学术界有很多方法,我还没有好好去研究。

3)然后,如果ds中的第i个单词wi在这里选择了一个与原先不同的topic,就会对θd和φt有影响了(根据前面提到过的这两个向量的计算公式可以很容易知道)。它们的影响又会反过来影响对上面提到的p(w|d)的计算。对D中所有的d中的所有w进行一次p(w|d)的计算并重新选择topic看作一次迭代。这样进行n次循环迭代之后,就会收敛到LDA所需要的结果了。

LDA(Latent Dirichlet Allocation)主题模型算法的更多相关文章

  1. LDA(Latent Dirichlet allocation)主题模型

    LDA是一种典型的词袋模型,即它认为一篇文档是由一组词构成的一个集合,词与词之间没有顺序以及先后的关系.一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 它是一种主题模型,它可以将文档 ...

  2. JGibbLDA:java版本的LDA(Latent Dirichlet Allocation)实现、修改及使用

    转载自:http://blog.csdn.net/memray/article/details/16810763   一.概述 JGibbLDA是一个java版本的LDA(Latent Dirichl ...

  3. LDA(latent dirichlet allocation)

    1.LDA介绍 LDA假设生成一份文档的步骤如下: 模型表示: 单词w:词典的长度为v,则单词为长度为v的,只有一个分量是1,其他分量为0的向量         $(0,0,...,0,1,0,... ...

  4. Latent Dirichlet Allocation 文本分类主题模型

    文本提取特征常用的模型有:1.Bag-of-words:最原始的特征集,一个单词/分词就是一个特征.往往一个数据集就会有上万个特征:有一些简单的指标可以帮助筛选掉一些对分类没帮助的词语,例如去停词,计 ...

  5. [综] Latent Dirichlet Allocation(LDA)主题模型算法

    多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http:// ...

  6. LDA( Latent Dirichlet Allocation)主题模型 学习报告

    1     问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一 ...

  7. 转:关于Latent Dirichlet Allocation及Hierarchical LDA模型的必读文章和相关代码

    关于Latent Dirichlet Allocation及Hierarchical LDA模型的必读文章和相关代码 转: http://andyliuxs.iteye.com/blog/105174 ...

  8. Spark:聚类算法之LDA主题模型算法

    http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利 ...

  9. Spark机器学习(8):LDA主题模型算法

    1. LDA基础知识 LDA(Latent Dirichlet Allocation)是一种主题模型.LDA一个三层贝叶斯概率模型,包含词.主题和文档三层结构. LDA是一个生成模型,可以用来生成一篇 ...

随机推荐

  1. 多线程编程-- part5 锁的种类以及辨析

    java中的锁,可以分为同步锁和JUC包中的锁. 同步锁 通过synchronized关键字进行同步,实现对竞争资源的互斥访问的锁,. 原理:对于每一个对象,有且只有一个同步锁,在同一时间点,所有的线 ...

  2. Label 自适应文本(StoryBoard/xib)

    To make your label automatically resize height you need to do following: Set layout constrains for l ...

  3. jumpserver开源堡垒机部署安装

    0x01.前言 Jumpserver 是全球首款完全开源的堡垒机,使用 GNU GPL v2.0 开源协议,是符合 4A 的专业运维审计系统. Jumpserver 使用 Python / Djang ...

  4. NFS 网络文件系统快速部署手册

    NFS服务端部署配置 一.安装nfs-utils和rpcbind服务,安装完后检查 # yum install -y nfs-utils rpcbind # rpm -qa nfs-utils rpc ...

  5. win7安装xmanager报错error1303、err1317

    安装xmanager时出现的一些问题,记录如下. 1.安装xmanager时,提示error1303.如下图,按照百度的办法,创建相应的文件夹后,点击重试. 2.重试后提示err1317,如下图所示. ...

  6. jenkins插件管理提示“update information obtained:不可用ago”

    jenkins插件管理遇到两个错误 (1)插件管理页面提示:There were errors checking the update sites:IOException:Unable to tunn ...

  7. zencart产品属性dropmenu select只有一个选择项时自动变成radio单选的解决办法

    includes\modules\classic\attributes.php 在大约786行代码 case ($products_options->RecordCount() == 1): 的 ...

  8. 火狐插件simple timer 定时打开指定网页

    今天我要介绍的是火狐浏览器一款插件:Simple Timer,该插件是火狐一个可以添加计时器和定时提醒功能插件,该插件的主要作用就是当你的设置在某一个时刻提醒时,插件会自动弹出通知,并且自动打开你想要 ...

  9. 紫书 例题 10-11 UVa 11181(概率计算)

    这道题不能凭感觉做了.要套公式 r个人买了东西叫事件E, 第i个人买东西的概率叫做事件Ei 求得是P(E|Ei), 则P(E|Ei)= P(E|Ei)/ P(E) 那么P(E)可以枚举求得, 用递归求 ...

  10. k8s master节点添加kubectl的使用