神经风格转换 (Neural-Style-Transfer-Papers)
原文:https://github.com/ycjing/Neural-Style-Transfer-Papers
Neural-Style-Transfer-Papers
Selected papers, corresponding codes and pre-trained models in our review paper "Neural Style Transfer: A Review"
Citation
If you find this repository useful for your research, please cite
@article{jing2017neural,
title={Neural Style Transfer: A Review},
author={Jing, Yongcheng and Yang, Yezhou and Feng, Zunlei and Ye, Jingwen and Song, Mingli},
journal={arXiv preprint arXiv:1705.04058},
year={2017}
}
Pre-trained Models in Our Paper
✅[Coming Soon]
A Taxonomy of Current Methods
1. Descriptive Neural Methods Based On Image Iteration
1.1. MMD-based Descriptive Neural Methods
✅ [A Neural Algorithm of Artistic Style] [Paper] (First Neural Style Transfer Paper)
❇️ Code:
✅ [Image Style Transfer Using Convolutional Neural Networks] [Paper] (CVPR 2016)
✅ [Stable and Controllable Neural Texture Synthesis and Style Transfer Using Histogram Losses] [Paper] (CVPR 2017)
✅ [Demystifying Neural Style Transfer] [Paper] (Theoretical Explanation) (IJCAI 2017)
❇️ Code:
✅ [Content-Aware Neural Style Transfer] [Paper]
✅ [Towards Deep Style Transfer: A Content-Aware Perspective] [Paper] (BMVC 2016)
1.2. MRF-based Descriptive Neural Methods
✅ [Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis] [Paper] (CVPR 2016)
❇️ Code:
✅ [Neural Doodle_Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]
2. Generative Neural Methods Based On Model Iteration
✅ [Perceptual Losses for Real-Time Style Transfer and Super-Resolution] [Paper] (ECCV 2016)
❇️ Code:
❇️ Pre-trained Models:
✅ [Texture Networks: Feed-forward Synthesis of Textures and Stylized Images] [Paper] (ICML 2016)
❇️ Code:
✅ [Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis] [Paper] (CVPR 2017)
❇️ Code:
✅ [Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks] [Paper] (ECCV 2016)
❇️ Code:
✅ [A Learned Representation for Artistic Style] [Paper] (ICLR 2017)
❇️ Code:
✅ [Fast Patch-based Style Transfer of Arbitrary Style] [Paper]
❇️ Code:
Slight Modifications of Current Methods
1. Modifications of Descriptive Neural Methods
✅ [Exploring the Neural Algorithm of Artistic Style] [Paper]
✅ [Improving the Neural Algorithm of Artistic Style] [Paper]
✅ [Preserving Color in Neural Artistic Style Transfer] [Paper]
✅ [Controlling Perceptual Factors in Neural Style Transfer] [Paper]
❇️ Code:
2. Modifications of Generative Neural Methods
✅ [Instance Normalization:The Missing Ingredient for Fast Stylization] [Paper]
❇️ Code:
✅ [Depth-Preserving Style Transfer] [Paper]
❇️ Code:
Extensions to Specific Types of Images
✅ [Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]
❇️ Code:
✅ [Painting Style Transfer for Head Portraits Using Convolutional Neural Networks] [Paper] (SIGGRAPH 2016)
✅ [Son of Zorn's Lemma Targeted Style Transfer Using Instance-aware Semantic Segmentation] [Paper]
✅ [Artistic Style Transfer for Videos] [Paper] (GCPR 2016)
❇️ Code:
✅ [DeepMovie: Using Optical Flow and Deep Neural Networks to Stylize Movies] [Paper]
Application
✅ Prisma
✅ Ostagram
❇️ Code:
Application Papers
✅ [Bringing Impressionism to Life with Neural Style Transfer in Come Swim] [Paper]
✅ [Imaging Novecento. A Mobile App for Automatic Recognition of Artworks and Transfer of Artistic Styles] [Paper]
Blogs
✅ https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/
✅ https://research.googleblog.com/2016/10/supercharging-style-transfer.html
Exciting New Directions
✅ Character Style Transfer
[Awesome Typography: Statistics-based Text Effects Transfer][Paper]
[Rewrite: Neural Style Transfer For Chinese Fonts][Project]
神经风格转换 (Neural-Style-Transfer-Papers)的更多相关文章
- 神经风格转换Neural Style Transfer a review
原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...
- 项目总结四:神经风格迁移项目(Art generation with Neural Style Transfer)
1.项目介绍 神经风格转换 (NST) 是深部学习中最有趣的技术之一.它合并两个图像, 即 内容图像 C(content image) 和 样式图像S(style image), 以生成图像 G(ge ...
- fast neural style transfer图像风格迁移基于tensorflow实现
引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...
- [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer
第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...
- DeepLearning.ai-Week4-Deep Learning & Art: Neural Style Transfer
1 - Task Implement the neural style transfer algorithm Generate novel artistic images using your alg ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换
一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...
- Art: Neural Style Transfer
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 1.Practice quentions
[解释] This allows us to learn to predict a person’s identity using a softmax output unit, where the n ...
随机推荐
- JavaScript json loop item in array
Iterating through/Parsing JSON Object via JavaScript 解答1 Your JSON object is incorrect because it ha ...
- Vue的父子组件通信(转载)
Vue是一个轻量级的渐进式框架,对于它的一些特性和优点在此就不做赘述,本篇文章主要来探讨一下Vue子父组件通信的问题 首先我们先搭好开发环境,我们首先得装好git和npm这两个工具(如果有不清楚的同学 ...
- 《Using Python to Access Web Data》Week4 Programs that Surf the Web 课堂笔记
Coursera课程<Using Python to Access Web Data> 密歇根大学 Week4 Programs that Surf the Web 12.3 Unicod ...
- linux打包
1.打成tar包 sudo tar -zcf boot.tar /boot/ 2.打成zip包 sudo zip -r boot.zip ./*
- Python子类调用父类内属性的方法
常见的就是初始化方法__init__() python中类的初始化方法是__init__(),因此父类子类的初始化方法都是这个,如果子类不实现这个函数,初始化时调用父类的初始化函数,如果子类实现这个函 ...
- python 爬虫入门1 爬取代理服务器网址
刚学,只会一点正则,还只能爬1页..以后还会加入测试 #coding:utf-8 import urllib import urllib2 import re #抓取代理服务器地址 Key = 1 u ...
- Cocos2d-X网络编程(1) 网络基本概念
网络模型 OSI层模型.TCP/IP的层模型如下所示. TCP/IP各层对应的协议如下所示. 通过初步的了解,我知道: IP协议:对应于网络层,是网络层的协议, TCP协议:对应于传输层,是传输层的协 ...
- [JS] 鼠标点击文本框清空默认值,离开文本框恢复默认值
在使用文本框的时候,若设定了初始值,选择文本框进行输入的时候要将本来的内容进行删除,会显得非常麻烦 可以在文本框属性定义触发onfocus和onblur两个事件时对应的js功能 下面以asp.net代 ...
- RBAC----基于角色的访问权限控制
RBAC是什么? 基于角色的权限访问控制(Role-Based Access Control) 作为传统访问控制(自主访问.强制访问)的有前景的代替 受到了广泛的关注. 在RBAC中,权限与角色相关联 ...
- SVN与Git的优点差异比较
今天自己还是很有进步的,但是 下午的进度很慢,学习还是得回去,不能在工位进行 在网上看到一篇有关于SVN与Git的区别 复制下来了,以后可以经常看看 一. 集中式vs分布式 1. Subversion ...