神经风格转换 (Neural-Style-Transfer-Papers)
原文:https://github.com/ycjing/Neural-Style-Transfer-Papers
Neural-Style-Transfer-Papers
Selected papers, corresponding codes and pre-trained models in our review paper "Neural Style Transfer: A Review"
Citation
If you find this repository useful for your research, please cite
@article{jing2017neural,
title={Neural Style Transfer: A Review},
author={Jing, Yongcheng and Yang, Yezhou and Feng, Zunlei and Ye, Jingwen and Song, Mingli},
journal={arXiv preprint arXiv:1705.04058},
year={2017}
}
Pre-trained Models in Our Paper
✅[Coming Soon]
A Taxonomy of Current Methods
1. Descriptive Neural Methods Based On Image Iteration
1.1. MMD-based Descriptive Neural Methods
✅ [A Neural Algorithm of Artistic Style] [Paper] (First Neural Style Transfer Paper)
❇️ Code:
✅ [Image Style Transfer Using Convolutional Neural Networks] [Paper] (CVPR 2016)
✅ [Stable and Controllable Neural Texture Synthesis and Style Transfer Using Histogram Losses] [Paper] (CVPR 2017)
✅ [Demystifying Neural Style Transfer] [Paper] (Theoretical Explanation) (IJCAI 2017)
❇️ Code:
✅ [Content-Aware Neural Style Transfer] [Paper]
✅ [Towards Deep Style Transfer: A Content-Aware Perspective] [Paper] (BMVC 2016)
1.2. MRF-based Descriptive Neural Methods
✅ [Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis] [Paper] (CVPR 2016)
❇️ Code:
✅ [Neural Doodle_Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]
2. Generative Neural Methods Based On Model Iteration
✅ [Perceptual Losses for Real-Time Style Transfer and Super-Resolution] [Paper] (ECCV 2016)
❇️ Code:
❇️ Pre-trained Models:
✅ [Texture Networks: Feed-forward Synthesis of Textures and Stylized Images] [Paper] (ICML 2016)
❇️ Code:
✅ [Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis] [Paper] (CVPR 2017)
❇️ Code:
✅ [Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks] [Paper] (ECCV 2016)
❇️ Code:
✅ [A Learned Representation for Artistic Style] [Paper] (ICLR 2017)
❇️ Code:
✅ [Fast Patch-based Style Transfer of Arbitrary Style] [Paper]
❇️ Code:
Slight Modifications of Current Methods
1. Modifications of Descriptive Neural Methods
✅ [Exploring the Neural Algorithm of Artistic Style] [Paper]
✅ [Improving the Neural Algorithm of Artistic Style] [Paper]
✅ [Preserving Color in Neural Artistic Style Transfer] [Paper]
✅ [Controlling Perceptual Factors in Neural Style Transfer] [Paper]
❇️ Code:
2. Modifications of Generative Neural Methods
✅ [Instance Normalization:The Missing Ingredient for Fast Stylization] [Paper]
❇️ Code:
✅ [Depth-Preserving Style Transfer] [Paper]
❇️ Code:
Extensions to Specific Types of Images
✅ [Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]
❇️ Code:
✅ [Painting Style Transfer for Head Portraits Using Convolutional Neural Networks] [Paper] (SIGGRAPH 2016)
✅ [Son of Zorn's Lemma Targeted Style Transfer Using Instance-aware Semantic Segmentation] [Paper]
✅ [Artistic Style Transfer for Videos] [Paper] (GCPR 2016)
❇️ Code:
✅ [DeepMovie: Using Optical Flow and Deep Neural Networks to Stylize Movies] [Paper]
Application
✅ Prisma
✅ Ostagram
❇️ Code:
Application Papers
✅ [Bringing Impressionism to Life with Neural Style Transfer in Come Swim] [Paper]
✅ [Imaging Novecento. A Mobile App for Automatic Recognition of Artworks and Transfer of Artistic Styles] [Paper]
Blogs
✅ https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/
✅ https://research.googleblog.com/2016/10/supercharging-style-transfer.html
Exciting New Directions
✅ Character Style Transfer
[Awesome Typography: Statistics-based Text Effects Transfer][Paper]
[Rewrite: Neural Style Transfer For Chinese Fonts][Project]
神经风格转换 (Neural-Style-Transfer-Papers)的更多相关文章
- 神经风格转换Neural Style Transfer a review
原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...
- 项目总结四:神经风格迁移项目(Art generation with Neural Style Transfer)
1.项目介绍 神经风格转换 (NST) 是深部学习中最有趣的技术之一.它合并两个图像, 即 内容图像 C(content image) 和 样式图像S(style image), 以生成图像 G(ge ...
- fast neural style transfer图像风格迁移基于tensorflow实现
引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...
- [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer
第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...
- DeepLearning.ai-Week4-Deep Learning & Art: Neural Style Transfer
1 - Task Implement the neural style transfer algorithm Generate novel artistic images using your alg ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换
一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...
- Art: Neural Style Transfer
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 1.Practice quentions
[解释] This allows us to learn to predict a person’s identity using a softmax output unit, where the n ...
随机推荐
- 省市区,级联查询,ajaxgird,ajaxfrom
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...
- leetcode 56. Merge Intervals 、57. Insert Interval
56. Merge Intervals是一个无序的,需要将整体合并:57. Insert Interval是一个本身有序的且已经合并好的,需要将新的插入进这个已经合并好的然后合并成新的. 56. Me ...
- Html/CSS 示例演练 图书馆后台界面
示例演练(html css javascript) --制作图书馆后台界面 1. 成品图
- The file is inaccessible to Server.
ArcGIS Unable to Start serviceserver安装后,启动服务失败,报错信息如下:Unable to Start service. Error (Server object ...
- 浅谈防火墙对FTP的影响及故障排除
本文转载自:http://www.cnblogs.com/emanlee/archive/2013/01/07/2849680.html 向作者致敬! TP是常见的基于TCP的网络服务,它使用了两个 ...
- python 接口测试时,后端报错no String-argument constructor/factory method
解决方法: 1.先将字典转化为序列化的数据类型 data = {"pageNo":0,"pageSize":10,"shopId":15,& ...
- ELK是什么
为什么做日志系统 通常当系统发生故障时,工程师需要登录到各个服务器上,使用 grep / sed / awk 等 Linux 脚本工具去日志里查找故障原因.在没有日志系统的情况下,首先需要定位处理请求 ...
- mysql中关于 like ,not like 的用法时不能显示空值的数据(空值不参与判断,直接过滤空值)
一般在项目中用法是(这种没办法显示空值的数据): select * from 表 where 字段 like %aaa%; 解决空值不显示(除了显示的数据外,空值数据也可以显示): select * ...
- 5.使用github脚本LAZY----几个最好的发行版----自定义终端----基本命令
使用现成的脚本 LAZY * 如果您不想手动设置,可以用这个脚本帮您设置 访问:github.com/arismelachroinos/lscript sudo apt-get git git clo ...
- maven项目的导包问题,已经加载jar包了可是idea检测不到
1.详细请参考 https://blog.csdn.net/brainhang/article/details/76725080 把测试模式注释即可