神经风格转换 (Neural-Style-Transfer-Papers)
原文:https://github.com/ycjing/Neural-Style-Transfer-Papers
Neural-Style-Transfer-Papers
Selected papers, corresponding codes and pre-trained models in our review paper "Neural Style Transfer: A Review"
Citation
If you find this repository useful for your research, please cite
@article{jing2017neural,
title={Neural Style Transfer: A Review},
author={Jing, Yongcheng and Yang, Yezhou and Feng, Zunlei and Ye, Jingwen and Song, Mingli},
journal={arXiv preprint arXiv:1705.04058},
year={2017}
}
Pre-trained Models in Our Paper
✅[Coming Soon]
A Taxonomy of Current Methods
1. Descriptive Neural Methods Based On Image Iteration
1.1. MMD-based Descriptive Neural Methods
✅ [A Neural Algorithm of Artistic Style] [Paper] (First Neural Style Transfer Paper)
❇️ Code:
✅ [Image Style Transfer Using Convolutional Neural Networks] [Paper] (CVPR 2016)
✅ [Stable and Controllable Neural Texture Synthesis and Style Transfer Using Histogram Losses] [Paper] (CVPR 2017)
✅ [Demystifying Neural Style Transfer] [Paper] (Theoretical Explanation) (IJCAI 2017)
❇️ Code:
✅ [Content-Aware Neural Style Transfer] [Paper]
✅ [Towards Deep Style Transfer: A Content-Aware Perspective] [Paper] (BMVC 2016)
1.2. MRF-based Descriptive Neural Methods
✅ [Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis] [Paper] (CVPR 2016)
❇️ Code:
✅ [Neural Doodle_Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]
2. Generative Neural Methods Based On Model Iteration
✅ [Perceptual Losses for Real-Time Style Transfer and Super-Resolution] [Paper] (ECCV 2016)
❇️ Code:
❇️ Pre-trained Models:
✅ [Texture Networks: Feed-forward Synthesis of Textures and Stylized Images] [Paper] (ICML 2016)
❇️ Code:
✅ [Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis] [Paper] (CVPR 2017)
❇️ Code:
✅ [Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks] [Paper] (ECCV 2016)
❇️ Code:
✅ [A Learned Representation for Artistic Style] [Paper] (ICLR 2017)
❇️ Code:
✅ [Fast Patch-based Style Transfer of Arbitrary Style] [Paper]
❇️ Code:
Slight Modifications of Current Methods
1. Modifications of Descriptive Neural Methods
✅ [Exploring the Neural Algorithm of Artistic Style] [Paper]
✅ [Improving the Neural Algorithm of Artistic Style] [Paper]
✅ [Preserving Color in Neural Artistic Style Transfer] [Paper]
✅ [Controlling Perceptual Factors in Neural Style Transfer] [Paper]
❇️ Code:
2. Modifications of Generative Neural Methods
✅ [Instance Normalization:The Missing Ingredient for Fast Stylization] [Paper]
❇️ Code:
✅ [Depth-Preserving Style Transfer] [Paper]
❇️ Code:
Extensions to Specific Types of Images
✅ [Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]
❇️ Code:
✅ [Painting Style Transfer for Head Portraits Using Convolutional Neural Networks] [Paper] (SIGGRAPH 2016)
✅ [Son of Zorn's Lemma Targeted Style Transfer Using Instance-aware Semantic Segmentation] [Paper]
✅ [Artistic Style Transfer for Videos] [Paper] (GCPR 2016)
❇️ Code:
✅ [DeepMovie: Using Optical Flow and Deep Neural Networks to Stylize Movies] [Paper]
Application
✅ Prisma
✅ Ostagram
❇️ Code:
Application Papers
✅ [Bringing Impressionism to Life with Neural Style Transfer in Come Swim] [Paper]
✅ [Imaging Novecento. A Mobile App for Automatic Recognition of Artworks and Transfer of Artistic Styles] [Paper]
Blogs
✅ https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/
✅ https://research.googleblog.com/2016/10/supercharging-style-transfer.html
Exciting New Directions
✅ Character Style Transfer
[Awesome Typography: Statistics-based Text Effects Transfer][Paper]
[Rewrite: Neural Style Transfer For Chinese Fonts][Project]
神经风格转换 (Neural-Style-Transfer-Papers)的更多相关文章
- 神经风格转换Neural Style Transfer a review
原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...
- 项目总结四:神经风格迁移项目(Art generation with Neural Style Transfer)
1.项目介绍 神经风格转换 (NST) 是深部学习中最有趣的技术之一.它合并两个图像, 即 内容图像 C(content image) 和 样式图像S(style image), 以生成图像 G(ge ...
- fast neural style transfer图像风格迁移基于tensorflow实现
引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...
- [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer
第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...
- DeepLearning.ai-Week4-Deep Learning & Art: Neural Style Transfer
1 - Task Implement the neural style transfer algorithm Generate novel artistic images using your alg ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换
一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...
- Art: Neural Style Transfer
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 1.Practice quentions
[解释] This allows us to learn to predict a person’s identity using a softmax output unit, where the n ...
随机推荐
- maven使用常见问题
1.我写的是src/main/java/config/mybatis-cofig.xml 但总是报错 Could not find resource src/main/java/config/myba ...
- MVC的一个简单实例
基本思路: 一个Regist.jsp注册页面,用于收集用户信息,发送请求给控制器Servlet:控制器层Servlet封装模型层对象 jBean,并调用其方法regiser实现用户信息的保存:模型层J ...
- spring boot shiro redis整合基于角色和权限的安全管理-Java编程
一.概述 本博客主要讲解spring boot整合Apache的shiro框架,实现基于角色的安全访问控制或者基于权限的访问安全控制,其中还使用到分布式缓存redis进行用户认证信息的缓存,减少数据库 ...
- PLSQL导出还原数据库
1 导出存储过程,触发器,序列等所有用户对象.(备份) 导出所有的表,存储过程,触发器,序列等所有的创建语句(.sql文件) 在PL/SQL Developer的菜单Tools(工具) => ...
- Linux_RHEL7_LDAP、Autofs服务
目录 目录 前言 LDAP 加入LDAP用户认证服务器 文件自动挂载服务autofs 前言 LDAP服务器,用作于网络用户的集中管理.在企业中员工的个人帐号一般采用集中管理的方式,在不同的系统平台上也 ...
- Linux_进程管理&计划任务
目录 目录 top打开Linux系统任务管理控制台 ps进程查询指令 kill进程关闭指令 一个小实验 一次性计划任务 周期性计划任务 top打开Linux系统任务管理控制台 快捷键: P M k q ...
- robot framework断言
一.基础 RobotFramework带有丰富的系统关键,使用时无需导入,直接使用,为写自动化用例带来了极大的方便:不能停留在知道或者是会得程度,只有熟练使用各关键字,才能提升自动化用例的写作效率.下 ...
- Unity UI —Text
Character Text 文本字体的编辑 Font Style 字体格式可以自行下载也可在windows自带字体中查找 Font Size 字体尺寸 Line Spacing 行距 Rich Te ...
- oracle数据库表空间创建&导入&导出
1.表空间创建 --删除表空间 drop tablespace EVPBDMGIS including contents and datafiles; --删除用户 drop user EVPBDMG ...
- 【Linux开发】IO streaming DMA buffer importing
http://linuxtv.org/downloads/v4l-dvb-apis/dmabuf.html I/O流 (DMA缓存引用) 这是一个实验性接口,将来可能发生改变 DMABUF框架提供了在 ...