题目大意:给定一个 N 个点,M 条边的有向图,现有 Q 个询问,每次询问 X 到 Y 的最小密度路径是多少。最小密度路径的定义是路径长度除以路径边数。

题解:利用矩阵乘法,可以预处理出从 X 到 Y 恰好经过 K 条边的最短路是多少。对于每次询问,直接处理处理即可,时间复杂度为 \(O(n^4)\)。

注意:恰好经过 K 条边的最短路不能将 G[i][i] 初始化成 0,因为边数有实际意义,若这样初始化意味着有自环出现。至少经过 K 条边的同理,也不能这样初始化。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=55;
const int inf=0x3f3f3f3f; int n,m,q;
struct mat{
int d[maxn][maxn];
mat(){memset(d,0x3f,sizeof(d));}
int *operator[](int i){return d[i];}
friend mat operator*(mat &x,mat &y){
mat z;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
z[i][j]=min(z[i][j],x[i][k]+y[k][j]);
return z;
}
}d[maxn]; void read_and_parse(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y,z;scanf("%d%d%d",&x,&y,&z);
d[1][x][y]=min(d[1][x][y],z);
}
}
void solve(){
for(int i=2;i<=n;i++)d[i]=d[i-1]*d[1];
scanf("%d",&q);
while(q--){
int x,y;scanf("%d%d",&x,&y);
bool flag=0;double ans=1e18;
for(int i=n;i;i--){
if(d[i][x][y]!=inf){
flag=1;
ans=min(ans,(double)d[i][x][y]/(double)i);
}
}
if(flag)printf("%.3lf\n",ans);
else puts("OMG!");
}
}
int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P1730】最小密度路径的更多相关文章

  1. [洛谷P1730] 最小密度路径

    类型:Floyd 传送门:>Here< 题意:定义一条路径密度 = 该路径长度 / 边数.给出一张$DAG$,现有$Q$次询问,每次给出$X,Y$,问$X,Y$的最小密度路径($N \le ...

  2. 洛谷P1730 最小密度路径(floyd)

    题意 题目链接 Sol zz floyd. 很显然的一个dp方程\(f[i][j][k][l]\)表示从\(i\)到\(j\)经过了\(k\)条边的最小权值 可以证明最优路径的长度一定\(\leqsl ...

  3. 洛谷P1730最小密度路径

    题目传送门; 首先理解题目,究其本质就是一个最短路问题,而且数据范围贼水,用floyd完全没问题,但是题目有变化,要求出路径边权值与边数之比,这里就可以考虑在把floyd中的二维数组变为三维,f[ i ...

  4. Luogu P1730 最小密度路径(最短路径+dp)

    P1730 最小密度路径 题面 题目描述 给出一张有 \(N\) 个点 \(M\) 条边的加权有向无环图,接下来有 \(Q\) 个询问,每个询问包括 \(2\) 个节点 \(X\) 和 \(Y\) , ...

  5. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  6. [Luogu 1730]最小密度路径

    Description 给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量). ...

  7. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  8. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

  9. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

随机推荐

  1. asp.net mvc 依赖注入Ninject

    1.安装Ninject 2.使用Ninject 一 安装Ninject Nuget:Ninject 二 使用Ninject public interface IStudent { string Get ...

  2. C++ 结构体重载运算符

    听说这个东西有很多种写法什么的,来不及了(要退役了),先整一个之前用到的,可能用到的频率比较高的东西上来. struct node{ ll x,y; }; bool operator < (co ...

  3. ios模拟器快捷键

    shift+cmd+h  返回桌面 cmd+5或者4或者3  可以直接调节大小 cmd+R运行项目 cmd+R弹出键盘 ios模拟器弹出键盘 在xcode6中, 模拟器中的键盘和电脑的键盘可以进行绑定 ...

  4. linxu passwd 给linux用户设置密码 命令

    [root@localhost ~]# passwd # 修改 root 用户的密码 passwd 给linux用户设置密码 命令 passwd www 直接passwd是当前用户设置密码 非交互式修 ...

  5. Python 爬取SeeBug poc

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-08-24 21:42:52 # @Author : EnderZhou (z ...

  6. XSS-笔记

     Cross Site Script  跨站脚本 是一种客户端代码的注入  而命令注入.sql注入都是客户端代码的注入.   XSS攻击行为的目标为:1.窃取目标的cookie信息 2.执行CSRF脚 ...

  7. HDU 1159 Common Subsequence (动态规划、最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. Python 最常见的 170 道面试题全解析:2019 版

    Python 最常见的 170 道面试题全解析:2019 版 引言 最近在刷面试题,所以需要看大量的 Python 相关的面试题,从大量的题目中总结了很多的知识,同时也对一些题目进行拓展了,但是在看了 ...

  9. JavaScript应懂的概念

    目录 垃圾回收 函数作用域, 块级作用域和词法作用域 调用堆栈 原始类型 值类型和引用类型 隐式, 显式, 名义和鸭子类型 == 与 ===, typeof 与 instanceof this, ca ...

  10. Linux FTP的安装与权限配置

    ftp安装部分,操作步骤如下: 1.切换到root用户 2.查看是否安装vsftp,我这个是已经安装的. [root@localhost vsftpd]# rpm -qa |grep vsftpd v ...