[多校联考2019(Round 5)]蓝精灵的请求(二分图染色+背包)

题面

在山的那边海的那边住着 n 个蓝精灵,这 n 个蓝精灵之间有 m 对好友关系,现在蓝精灵们想要玩一个团队竞技游戏,需要分为两组进行,且每一组中任意两个蓝精灵都是好友。另外,他们还想要最小化每组蓝精灵内部的好友关系数之和。蓝精灵们怎么都想不到如何分组来进行游戏,所以找到你来帮助他们分组。(若第一组内部的好友关系数为 cnt1,第二组内部的好友关系数为 cnt2,则“每组蓝精灵内部的好友关系数之和”为 cnt1+cnt2)

\(n \leq 700\)

分析

实际上就是将一个图分成两个子图,使得每一个子图都是完全图。注意到没有边直接相连的点不能放在一个子图里。因此建原图的补图。那么补图中有边相连的点不能放在一个子图里。看到这个条件,我们想到了二分图染色。

于是我们对补图二分图染色。发现同一个联通块里相同颜色的点一定在同一个子图里。不同联通块里的两个点无论颜色都可以在一个子图里。

那么我们就可以预处理出\(f[i]\)表示是否存在一种分组方式使得某组的蓝精灵数为\(i\).具体方法是对于每个联通块,我们求出两种颜色的个数\(cnt[1],cnt[2]\),那么类似背包问题,可以用\(f[i]\)来更新\(f[i+cnt[1]],f[i+cnt[2]]\).注意要用滚动数组。

最后对于所有满足\(f[i]=1\)的\(i\),求边数最小值即可

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
#define maxn 700
using namespace std;
int n,m;
int g[maxn+5][maxn+5];
int invg[maxn+5][maxn+5];//反图
int col[maxn+5];
int cnt[5];
void dfs(int x,int c){
col[x]=c;
cnt[c]++;
for(int y=1;y<=n;y++){
if(y!=x&&g[x][y]==0){
if(!col[y]) dfs(y,3-c);
else if(col[y]==c){
printf("-1\n");
exit(0);
}
}
}
} inline int get_e(int x){
return x*(x-1)/2;
} int f[2][maxn+5];
//类似背包,记录能不能凑出一组点数为i的子图
int main(){
int u,v;
scanf("%d %d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d %d",&u,&v);
g[u][v]=1;
g[v][u]=1;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i!=j&&!g[i][j]) invg[i][j]=1;
}
}
int now=1;
f[1][0]=1;
for(int i=1;i<=n;i++){
if(!col[i]){
cnt[1]=cnt[2]=0;
dfs(i,1);
for(int j=0;j<=n;j++){
f[now^1][j+cnt[1]]|=f[now][j];
f[now^1][j+cnt[2]]|=f[now][j];
}
now^=1;
//同一个二分图联通块里,不同颜色的点不能放一起
}
}
int ans=INF;
for(int i=1;i<n;i++){
if(f[now][i]) ans=min(ans,get_e(i)+get_e(n-i));
}
printf("%d\n",ans);
}

[多校联考2019(Round 5 T2)]蓝精灵的请求(二分图染色+背包)的更多相关文章

  1. [多校联考2019(Round 4 T2)][51nod 1288]汽油补给(ST表+单调栈)

    [51nod 1288]汽油补给(ST表+单调栈) 题面 有(N+1)个城市,0是起点N是终点,开车从0 -> 1 - > 2...... -> N,车每走1个单位距离消耗1个单位的 ...

  2. [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)

    [多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...

  3. [多校联考2019(Round 5 T3)]青青草原的表彰大会(dp+组合数学)

    [多校联考2019(Round 5)]青青草原的表彰大会(dp+组合数学) 题面 青青草原上有n 只羊,他们聚集在包包大人的家里,举办一年一度的表彰大会,在这次的表彰大会中,包包大人让羊们按自己的贡献 ...

  4. [多校联考2019(Round 4 T1)][51nod 1295]Xor key(可持久化trie)

    [51nod 1295]Xor key(可持久化trie) 题面 给出一个长度为n的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] ...

  5. 【四校联考】【比赛题解】FJ NOIP 四校联考 2017 Round 7

    此次比赛为厦门一中出题.都是聚劳,不敢恭维. 莫名爆了个0,究其原因,竟然是快读炸了……很狗,很难受. 话不多说,来看看题: [T1] 题意: 样例: PS:1<=h[i]<=100000 ...

  6. [2019多校联考(Round 6 T3)]脱单计划 (费用流)

    [2019多校联考(Round 6 T3)]脱单计划 (费用流) 题面 你是一家相亲机构的策划总监,在一次相亲活动中,有 n 个小区的若干男士和 n个小区的若干女士报名了这次活动,你需要将这些参与者两 ...

  7. 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你

    [五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...

  8. 【BZOJ5498】[十二省联考2019]皮配(动态规划)

    [BZOJ5498][十二省联考2019]皮配(动态规划) 题面 BZOJ 洛谷 题解 先考虑暴力\(dp\),设\(f[i][j][k]\)表示前\(i\)所学校,有\(j\)人在某个阵营,有\(k ...

  9. 三校联考 Day3

    三校联考 Day3 大水题 题目描述:给出一个圆及圆上的若干个点,问两个点间的最远距离. solution 按极角排序,按顺序枚举,显然距离最远的点是单调的,线性时间可解出答案. 大包子的束缚 题目描 ...

随机推荐

  1. 24.二叉树中和为某一值的路径(python)

    题目描述 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中,数组长度大 ...

  2. 兄弟连教育分享-SQL性能优化十条经验

    1.查询的模糊匹配 尽量避免在一个复杂查询里面使用 LIKE '%parm1%'——红色标识位置的百分号会导致相关列的索引无法使用,最好不要用. 兄弟连教育分享-SQL性能优化十条经验 解决办法: 其 ...

  3. java文件断点续传的简单实现

    一.概述 所谓断点续传,其实只是指下载,也就是要从文件已经下载的地方开始继续下载.在以前版本的HTTP协议是不支持断点的,HTTP/1.1开始就支持了.一般断点下载时才用到Range和Content- ...

  4. 使用webuploader组件实现大文件分片上传,断点续传

    本人在2010年时使用swfupload为核心进行文件的批量上传的解决方案.见文章:WEB版一次选择多个文件进行批量上传(swfupload)的解决方案. 本人在2013年时使用plupload为核心 ...

  5. js怎么上传文件夹

    1 背景 用户本地有一份txt或者csv文件,无论是从业务数据库导出.还是其他途径获取,当需要使用蚂蚁的大数据分析工具进行数据加工.挖掘和共创应用的时候,首先要将本地文件上传至ODPS,普通的小文件通 ...

  6. [CF1093G]Multidimensional Queries 题解

    前言 DennyQi太巨了! 定义一个点\(a\),\(a_x\)表示\(a\)在第\(x\)维空间上的坐标值 题解 这题的思路珂以说非常巧妙(原谅我又用了这个"珂"), 我们知道 ...

  7. sh_02_快速体验

    sh_02_快速体验 import sh_01_九九乘法表 sh_01_九九乘法表.multiple_table()

  8. 举例子说明ubuntu中remove,autoremove,purge区别

    转自:慎用 apt-get autoremove !   apt-get 提供了一个用于下载和安装软件包的简易命令行界面.卸载软件包主要有这3个命令 remove – 卸载软件包autoremove ...

  9. 苹果CMSv10宝塔全自动定时采集教程

    伙伴们在建立好自己的网站添加自定义资源库后,由于手动采集方式比较耗时间和精力更新也不够及时,是不是特别希望能有一个全自动定时采集方法来帮助网站增加视频资源解放自己的双手,那么现在就教大家如何用宝塔一步 ...

  10. Spring Boot教程(十二)整合elk(1)

    elk 简介 Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等. Logstash是 ...