大意: 平面上n个点每个点坐标为(x,0)或(0,y), 求任意两点距离平方最大值的最小值.

二分答案, 转化为判定最大值是否<=e, 按$x$排序后, 因为固定左端点, $y$绝对值的最大值是跟右端点单调的, 滑动一个长度平方不超过e的区间, 同时保证右端点$x$的绝对值不超过左端点, 这样对于左端点在$x$轴的情况一定是最优的, 同样再固定右端点倒序处理正半轴的情况.

#include <iostream>
#include <random>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head #ifdef ONLINE_JUDGE
const int N = 1e6+10;
#else
const int N = 111;
#endif int n;
pii a[N];
int Lmin[N], Lmax[N], Rmin[N], Rmax[N]; ll sqr(ll x) {return x*x;}
ll ans = 1e18;
int chk(ll e) {
if (ans<=e) return 1;
int now = 1;
ll ans = 1e18;
REP(i,1,n) {
if (a[i].x>0) break;
while (now<n&&sqr(a[now+1].x-a[i].x)<=e&&abs(a[now+1].x)<=abs(a[i].x)) ++now;
while (abs(a[now].x)>abs(a[i].x)) --now;
int U = -1e9, D = 1e9;
if (i>1) U=max(U,Lmax[i-1]),D=min(D,Lmin[i-1]);
if (now<n) U=max(U,Rmax[now+1]),D=min(D,Rmin[now+1]);
ans = min(ans, max(sqr(U-D),max(sqr(U),sqr(D))+max(sqr(a[i].x),sqr(a[now].x))));
}
now = n;
PER(i,1,n) {
if (a[i].x<0) break;
while (now>1&&sqr(a[now-1].x-a[i].x)<=e&&abs(a[now-1].x)<=abs(a[i].x)) --now;
while (abs(a[now].x)>abs(a[i].x)) ++now;
int U = -1e9, D = 1e9;
if (i<n) U=max(U,Rmax[i+1]),D=min(D,Rmin[i+1]);
if (now>1) U=max(U,Lmax[now-1]),D=min(D,Lmin[now-1]);
ans = min(ans, max(sqr(U-D),max(sqr(U),sqr(D))+max(sqr(a[i].x),sqr(a[now].x))));
}
return ans<=e;
} int main() {
scanf("%d", &n);
REP(i,1,n) scanf("%d%d", &a[i].x,&a[i].y);
sort(a+1,a+1+n);
Lmin[1]=Lmax[1]=a[1].y;
REP(i,2,n) {
Lmin[i]=min(Lmin[i-1],a[i].y);
Lmax[i]=max(Lmax[i-1],a[i].y);
}
Rmin[n]=Rmax[n]=a[n].y;
PER(i,1,n-1) {
Rmin[i]=min(Rmin[i+1],a[i].y);
Rmax[i]=max(Rmax[i+1],a[i].y);
}
ll l = 0, r = min(sqr(Lmin[n]-Lmax[n]),sqr(a[1].x-a[n].x));
ans = r;
while (l<=r) {
if (chk(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%lld\n", ans);
}

Electric Charges CodeForces - 623C (二分答案)的更多相关文章

  1. Codeforces Round #425 (Div. 2) Problem C Strange Radiation (Codeforces 832C) - 二分答案 - 数论

    n people are standing on a coordinate axis in points with positive integer coordinates strictly less ...

  2. codeforces 359D 二分答案+RMQ

    上学期刷过裸的RMQ模板题,不过那时候一直不理解>_< 其实RMQ很简单: 设f[i][j]表示从i开始的,长度为2^j的一段元素中的最小值or最大值 那么f[i][j]=min/max{ ...

  3. Codeforces 1132D(二分答案+堆)

    题面 传送门 分析 二分答案,考虑如何判定 可以用贪心的方法,每次找最快没电的电脑,在没电前1单位时间给它充电 正确性显然 实现上可以维护一个堆,存储每个电脑电用完的时刻,每次从堆顶取出最小的一个给它 ...

  4. CodeForces 483B 二分答案

    题目: B. Friends and Presents time limit per test 1 second memory limit per test 256 megabytes input s ...

  5. CodeForces 549H | 二分答案

    参考了这个博客哇 #include<cstdio> #include<algorithm> #include<cstring> #define Max(a,b,c, ...

  6. AIM Tech Round (Div. 1) C. Electric Charges 二分

    C. Electric Charges 题目连接: http://www.codeforces.com/contest/623/problem/C Description Programmer Sas ...

  7. Codeforces 700A As Fast As Possible(二分答案)

    [题目链接] http://codeforces.com/problemset/problem/700/A [题目大意] 有一辆限载k人速度为v2的车,n个步行速度均为v1的人要通过一段长度为l的距离 ...

  8. Codeforces Round #276 (Div. 1) E. Sign on Fence (二分答案 主席树 区间合并)

    链接:http://codeforces.com/contest/484/problem/E 题意: 给你n个数的,每个数代表高度: 再给出m个询问,每次询问[l,r]区间内连续w个数的最大的最小值: ...

  9. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem D (Codeforces 831D) - 贪心 - 二分答案 - 动态规划

    There are n people and k keys on a straight line. Every person wants to get to the office which is l ...

随机推荐

  1. 论文阅读:Fast, Scalable, and Programmable Packet Scheduler in Hardware

    摘要: 随着链接速度的提高和CPU扩展速度的放缓,软件中的数据包调度会导致较低的精度和较高的CPU利用率. 通过将数据包调度卸载到诸如NIC之类的硬件,可以潜在地克服这些缺点.然而为了保持软件分组调度 ...

  2. 18.Python格式化字符串(格式化输出)

    Python 提供了“%”对各种类型的数据进行格式化输出,例如如下代码: price = 108 print ("the book's price is %s" % price) ...

  3. linux下安装R

    下载 版本:R3.2.2 下载地址:http://cran.rstudio.com/src/base/R-3/R-3.2.2.tar.gz 安装步骤: 解压 tar -zxvf R-3.2.2.tar ...

  4. linux 文件目录介绍

    网上的资源 太多了,copy 过来 留给自己用吧! 摘自 : http:/ 使用linux也有一年多时间了  最近也是一直在维护网站系统主机  下面是linux目录结构说明 本人使用的是centos系 ...

  5. Upload-libs通关详解

    Uplo ad-labs—详解 1前端验证绕过 前端验证绕过可以直接用burp万能绕过前端JS脚本 方法先上传一张jpg Burp改包然后改后缀 上传成功 2Content-Type方式绕过 此绕过方 ...

  6. 实现图像添加label

    void CmapwingisTest2View::OnToolsAddTiffLayer() { TCHAR szFilters[]= _T("TIFF Files (*.tif)|*.t ...

  7. 安装Dubbo 并且安装注册中心(Zookeeper-3.3.6)

    安装zookeeper 安装Tomcat 载dubbo-admin-2.5.4.war 进入Apache ZooKeeper官方网站进行下载,https://zookeeper.apache.org/ ...

  8. C++入门经典-例5.1-输出变量的指针

    1:代码如下: // 5.1.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using ...

  9. What exactly is the parameter e (event) and why pass it to JavaScript functions?

    What exactly is the parameter e (event) and why pass it to JavaScript functions? 问题 Well, when I lea ...

  10. 浏览器端-W3School-HTML:HTML DOM Select 对象

    ylbtech-浏览器端-W3School-HTML:HTML DOM Select 对象 1.返回顶部 1. HTML DOM Select 对象 Select 对象 Select 对象代表 HTM ...