题面

这道题在数学方面没什么难度:

对于每一个正整数n:

质因数分解后可以写成n=a1^k1a2^k2……*ai^ki

所求的数的因数和f(n)就等于f(n)=(1+a1+a1^2+……+a1^k1)(1+a2+a2^2+……+a2^k2)……*(1+ai+ai^2+……+ai^ki)

利用等比数列通项公式可以O(1)的时间算出每一项;

然后可以使用扩展欧几里得,费马小定理或求解逆元。

但,仅仅是这样吗?

注意,模数p是9901,十分的小,但是要求逆元的数完全可能是9901的倍数,从而与9901不互质,从而没有逆元

例如:950497 1 ans=2;

在处理完以上的特殊情况后我们可以十分生气的一边骂出题人一边AC掉它;

#include <bits/stdc++.h>
#define int long long
#define p 9901
using namespace std;
long long KSM(long long a,long long b)
{
long long res=;
while(b){
if(b&) res=res*a%p;
a=a*a%p;
b/=;
}
return res;
}
long long yinzi[],cnt,num[];
void fenjie(int a)
{
for(int i=;i<=sqrt(a);i++){
if(a%i==){
yinzi[++cnt]=i;
while(a%i==){
++num[cnt];
a/=i;
}
}
}
if(a>=){
yinzi[++cnt]=a;
num[cnt]=;
}
}
signed main()
{
int a,b;
cin>>a>>b;
fenjie(a);
for(int i=;i<=cnt;i++){
num[i]=num[i]*b;
}
long long ans=;
for(int i=;i<=cnt;i++){
ans=(ans*(-KSM(yinzi[i],num[i]+))%p*KSM((-yinzi[i]),p-))%p;
}
if(ans==){
cout<<""<<endl;
return ;
}
cout<<ans;
}

洛谷 P1593 因子和 题解的更多相关文章

  1. 洛谷 - P1593 - 因子和 - 费马小定理

    类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...

  2. 洛谷 P1593 因子和 || Sumdiv POJ - 1845

    以下弃用 这是一道一样的题(poj1845)的数据 没错,所有宣称直接用逆元/快速幂+费马小定理可做的,都会被hack掉(包括大量题解及AC代码) 什么原因呢?只是因为此题的模数太小了...虽然990 ...

  3. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  4. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  5. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  6. 洛谷P1577 切绳子题解

    洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...

  7. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  8. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  9. 【洛谷P3410】拍照题解(最大权闭合子图总结)

    题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. 注意:带下属不是白带的 ...

随机推荐

  1. DES加密 DESEncrypt

    /// <summary> /// DES加密/解密类. /// </summary> public class DESEncrypt { public DESEncrypt( ...

  2. mongodb性能测试:long时间戳与string格式时间

    string格式时间写入数据: { "_id" : ObjectId("5d314731a96f332d6c3193d4"), "news_id&qu ...

  3. AtCoder AGC037D Sorting a Grid (二分图匹配)

    题目链接 https://atcoder.jp/contests/agc037/tasks/agc037_d 题解 这场D题终于不像AGC032D和AGC036D一样神仙了-- 还是可做的吧 虽然考场 ...

  4. easyui tree 点击state=closed节点,每次重新加载数据

    http://blog.csdn.net/lovejavaloveworld/article/details/30052305 树控件读取URL.子节点的加载依赖于父节点的状态.当展开一个封闭的节点, ...

  5. linux下面实时查看进程,内存以及cpu使用情况使用命令

    top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器 可以直接使用top命令查看整体情况,如图: 但是这样虽然看的东西多,但是闲的比较 ...

  6. HTMLHint 配置文件

    HTMLHint 工具可以对 HTML 代码做静态代码检查,从而保证 HTML 代码的规范和质量.HTMLHint 工具内置 23 条规则,建议在 .htmlhintrc 配置文件中将规则尽可能都打开 ...

  7. 添加一个静态JAVA库

    LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) # Build all java files in the java subdirectory L ...

  8. gulp自动化构建工具安装使用(1)

    我用的是windows,所以以下操作针对于windows用户,其他系统有不一样的地方请自行查阅资料更正. 好了,废话少说,反正也就是随手捣腾.下雨了,天晴了,我们开始搞gulp了 安装:gulp是个构 ...

  9. 套接字选项 之 SO_REUSEADDR && SO_REUSEPORT

    说明 本文下面内容基本上是截取自stackoverflow,针对这两个选项,在另外一篇文章中做了总结,请移步<Linux TCP套接字选项 之 SO_REUSEADDR && S ...

  10. 五、smarty模板继承特性

    1.如何去实现模板之间的继承 继承是发生在模板之间的事,和PHP程序没有关系的 方法一: 在模板中使用<{extends}>函数实现模板的继承 <{extends file=”模板文 ...