VS2015+CUDA8.0环境配置

Anyway,在这里记录下正确的配置方式:

1、首先,上官网下载对应vs版本的CUDA toolkit:

https://developer.nvidia.com/cuda-toolkit-50-archive

(记住vs2010对应CUDA5.0,vs2013对应CUDA7.5,vs2015对应CUDA8.0)

2、接着,直接安装,记得在安装过程中如果你不想换你原有的显卡驱动的话,就选择自定义不安装driver;否则如果你直接选“精简”又不安装驱动,则CUDA安装无法成功。

3、安装完成之后,进入C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0 之后可以看到有好几个文件夹:bin、lib 、include等等,这就表明安装成功了

4、接下来,看看如何创建一个利用cuda编程的项目,打开vs创建项目时,你可以看到有了新的项目类型:

但是我们这里教你如何在一个空项目中编译cu文件,所以我们还是 创建一个vc++的空项目,接着创建一个新的cpp文件和cu文件

test.cpp代码如下:

#include <time.h>
#include <stdlib.h>
#include <stdio.h> //这里不要忘了加引用声明
extern "C" void MatrixMultiplication_CUDA(const float* M, const float* N, float* P, int Width); //构造函数...
//析构函数... // 产生矩阵,矩阵中元素0~1
void matgen(float* a, int Width)
{
int i, j;
for (i = 0; i < Width; i++)
{
for (j = 0; j < Width; j++)
{
a[i * Width + j] = (float)rand() / RAND_MAX + (float)rand() / (RAND_MAX*RAND_MAX);
}
}
} //矩阵乘法(CPU验证)
void MatrixMultiplication(const float* M, const float* N, float* P, int Width)
{
int i, j, k;
for (i = 0; i < Width; i++)
{
for (j = 0; j < Width; j++)
{
float sum = 0;
for (k = 0; k < Width; k++)
{
sum += M[i * Width + k] * N[k * Width + j];
}
P[i * Width + j] = sum;
}
}
} double MatrixMul_GPU()
{
float *M, *N, *Pg;
int Width = 1024; //1024×1024矩阵乘法
M = (float*)malloc(sizeof(float)* Width * Width);
N = (float*)malloc(sizeof(float)* Width * Width);
Pg = (float*)malloc(sizeof(float)* Width * Width); //保存GPU计算结果 srand(0); matgen(M, Width); //产生矩阵M
matgen(N, Width); //产生矩阵N double timeStart, timeEnd; //定义时间,求时间差用
timeStart = clock();
MatrixMultiplication_CUDA(M, N, Pg, Width); //GPU上计算
timeEnd = clock(); free(M);
free(N);
free(Pg);
return timeEnd - timeStart;
} double MatrixMul_CPU()
{
float *M, *N, *Pc;
int Width = 1024; //1024×1024矩阵乘法
M = (float*)malloc(sizeof(float)* Width * Width);
N = (float*)malloc(sizeof(float)* Width * Width);
Pc = (float*)malloc(sizeof(float)* Width * Width); //保存CPU计算结果 srand(0); matgen(M, Width); //产生矩阵M
matgen(N, Width); //产生矩阵N double timeStart, timeEnd; //定义时间,求时间差用
timeStart = clock();
MatrixMultiplication(M, N, Pc, Width); //CPU上计算
timeEnd = clock(); free(M);
free(N);
free(Pc);
return timeEnd - timeStart;
} //////////////////////////////////////////////////////////////////////////
int main()
{
printf("CPU use time %g\n", MatrixMul_CPU());
printf("GPU use time %g\n", MatrixMul_GPU());
system("pause");
return 0;
}

test.cu代码如下:

////CUDAtest.cu

#include "cuda_runtime.h"
#include "device_launch_parameters.h" #define TILE_WIDTH 16 // 核函数
// __global__ static void MatrixMulKernel(const float* Md,const float* Nd,float* Pd,int Width)
__global__ void MatrixMulKernel(const float* Md, const float* Nd, float* Pd, int Width)
{
//计算Pd和Md中元素的行索引
int Row = blockIdx.y * TILE_WIDTH + threadIdx.y; //行
int Col = blockIdx.x * TILE_WIDTH + threadIdx.x; //列 float Pvalue = 0.0;
for (int k = 0; k < Width; k++)
{
Pvalue += Md[Row * Width + k] * Nd[k * Width + Col];
}
//每个线程负责计算P中的一个元素
Pd[Row * Width + Col] = Pvalue;
} // 矩阵乘法(CUDA中)
// 在外部调用,使用extern
extern "C" void MatrixMultiplication_CUDA(const float* M, const float* N, float* P, int Width)
{
cudaSetDevice(0); //设置目标GPU float *Md, *Nd, *Pd;
int size = Width * Width * sizeof(float);//字节长度 cudaMalloc((void**)&Md, size);
cudaMalloc((void**)&Nd, size);
cudaMalloc((void**)&Pd, size); //Copies a matrix from the memory* area pointed to by src to the memory area pointed to by dst
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); //
dim3 dimGrid(Width / TILE_WIDTH, Width / TILE_WIDTH); //网格的维度
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH); //块的维度
MatrixMulKernel <<< dimGrid, dimBlock >>>(Md, Nd, Pd, Width); cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);
//释放设备上的矩阵
cudaFree(Md);
cudaFree(Nd);
cudaFree(Pd);
}

接下来就是第三方库的链接了,首先呢,你得右击项目,打开项目属性

分别在可执行文件目录下输入:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin

在包含目录下输入:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include

在库目录下输入:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\Win32

之后在链接器/输入/附加依赖项中输入:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\Win32目录下的所有lib文件的文件名

这时,如果你急于立马编译的话,你就会发现报错了:大致的意思是extern修饰的函数被应用,无法解析的外部命令

因为这时其实编译器没有编译cu文件,所以cpp文件中无法引用cu文件里的函数。

最关键的一步来了:

右击项目,点击生成依赖 项,选择“生成自定义”,然后勾选cuda


之后右击test.cu文件打开属性,修改“项目类型”如下:


大功告成,愉快的调试吧


CUDA编程之环境配置的更多相关文章

  1. CUDA学习,环境配置和简单例子

    根据摩尔定律,每18个月,硬件的速度翻一番.纵使CPU的主频会越来越高,但是其核数受到了极大的限制,目前来说,最多只有8个或者9个核.相比之下,GPU具有很大的优势,他有成千上万个核,能完成大规模的并 ...

  2. STM32编程环境配置(kile5)

    2018-08-2513:53:33 折腾了很久,花了两天的空闲时间终于烧进去程序了.完成了kile5对stm32编程的环境配置. 1.下载kile5 激活破解 2.安装stm32配置环境 3.加载工 ...

  3. GPU编程自学2 —— CUDA环境配置

    深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...

  4. Java/javaEE/web/jsp/网站编程环境配置及其软件下载和网站路径

    Java/javaEE/web/jsp/网站编程环境配置及其软件下载和网站路径 (2015/07/08更新) JDK下载地址(JDK官网下载地址) 下载地址为:http://www.oracle.co ...

  5. 【软件安装与环境配置】ubuntu16.04+caffe+nvidia+CUDA+cuDNN安装配置

    前言 博主想使用caffe框架进行深度学习相关网络的训练和测试,刚开始做,特此记录学习过程. 环境配置方面,博主以为最容易卡壳的是GPU的NVIDIA驱动的安装和CUDA的安装,前者尝试的都要吐了,可 ...

  6. windows下《Go Web编程》之Go环境配置和安装

    <Go Web编程>笔者是基于unix下讲述的,作为入门练手,我选择在windows下开发,全程按照目录进行... 一.安装 windows下需要安装MinGW,通过MinGW安装gcc支 ...

  7. 深度学习 GPU环境 Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6 环境配置

    本节详细说明一下深度学习环境配置,Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6 ...

  8. CUDA & cuDNN环境配置

    环境 python3.5 tensorflow 1.3 VUDA  8.0 cuDNN V6.0 1.确保GPU驱动已经安装 lspci | grep -i nvidia 通过此命令可以查看GPU信息 ...

  9. TensorFlow-GPU环境配置之二——CUDA环境配置

    1.安装最新显卡驱动 到系统设置->软件和更新->附加驱动中选中最新的显卡驱动,并应用 2.下载CUDA8.0 https://developer.nvidia.com/cuda-down ...

随机推荐

  1. numpy 中文手册

    https://yiyibooks.cn/xx/NumPy_v111/user/index.html

  2. ACM-ICPC 比赛环境的使用

    ACM-ICPC 现场赛不同的赛站可能比赛环境不同,不过一般都是 Ubuntu 系统.附带的软件可能略有不同,可能会有使用习惯的差异导致效率下降或者无法运行代码,但是在终端下编译运行代码都是相同的.本 ...

  3. 基于MFC的Media Player播放器的制作介绍

    |   版权声明:本文为博主原创文章,未经博主允许不得转载. 因为这次多媒体课程设计做一个基于MFC的播放器,因为本人实力太菜,需要播放音乐或视频文件时候,自己写不出解码 函数,所以准备使用第三方多媒 ...

  4. C语言函数指针用法

    #include <stdio.h> #include <string.h> static void sayHello(); static void salute(); voi ...

  5. leetcode.数组.769最多能完成排序的块-Java

    1. 具体题目 数组arr是[0, 1, ..., arr.length - 1]的一种排列,我们将这个数组分割成几个“块”,并将这些块分别进行排序.之后再连接起来,使得连接的结果和按升序排序后的原数 ...

  6. 牛客练习赛53 B 美味果冻

    链接:https://ac.nowcoder.com/acm/contest/1114/B来源:牛客 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言10485 ...

  7. loj6626 幼儿园唱歌题

    题目 不难想到把\(S\)的反串\(S^R\)接到\(S\)后面,这样就可以把\(S[l_1,r_1]\)的前缀转化为\(S^R[n-r_1+1,n-l_1+1]\)的后缀 回文树上两节点的lca就是 ...

  8. SpringBoot 应用程序启动过程探秘

    概述 说到接触 SpringBoot 伊始,给我第一映像最深的是有两个关键元素: 对照上面的典型代码,这个两个元素分别是: @SpringBootApplication SpringApplicati ...

  9. Jmeter服务器性能压测-用户登录实例CSV方式

    为什么用CSV方式压测,因为用jdbc链接数据库,我发现数据库数据量量大的情况下,Jmeter会内存溢出 第一步:数据准备,根据登录接口需要的参数准备测试数据 例子中,测试的登录接口需要4个参数化数据 ...

  10. qt大小写字符串比较

    https://blog.csdn.net/GraceLand525/article/details/48625593 Qt::CaseSensitivity cs = Qt::CaseInsensi ...