\(\texttt{Solution}\)

首先考虑 \(\texttt{dp}\) 维护题目要求的深度为 \(i\), 每个节点最多经过一次的不同有向路径数量 \(f_i\)。

明显的,只维护这个东西是不对的,因为忽视了这样的情况:

这样子这条路径是由原来的被蓝色圈圈包住的两个部分转移而来。

那么考虑记录 \(g_i\) 为两条不相交的有向路径数量。

然后蒟蒻兴冲冲地去 尝试了, 并过了前两个样例,但是过不了第三个样例,这是为什么?

发现 \(g_i\) 也有可能是由三条不相交的有向路径转移而来!

那么正解就浮出水面了:维护深度为 \(i\), \(j\) 条不相交的有向路径数量 \(dp_{i,j}\)。

转移如果想明白了状态其实很简单。这里还是说一下。

首先用背包求出深度为 \(i-1\), 和为 \(j\) 条不相交的有向路径数量 : bb[j] += dp[i - 1][k] * dp[i - 1][j - k]

第一种转移:根结点独立,然后其他的路径让两个子树自由组合 : dp[i][j] += bb[j - 1] + 2 * dp[i - 1][j - 1]

第二种转移:路径不包括根结点,或根结点为路径起点或终点: dp[i][j] += (2 * j + 1) * bb[j] + (4 * j + 2) * dp[i - 1][j]

第三种转移:路径包括根结点,且连接两条原来在子树中是两条链: dp[i][j] += j * (j + 1) * bb[j + 1] + 2 * j * (j + 1) * dp[i - 1][j + 1]

\(\texttt{Code}\)

#include<bits/stdc++.h>
#define L(i, j, k) for(int i = j; i <= k; i++)
#define R(i, j, k) for(int i = j; i >= k; i--)
using namespace std;
const int N = 444;
const int mod = 1e9 + 7;
int n, dp[N][N], bb[N];
int main() {
scanf("%d", &n);
dp[1][1] = 1;
L(i, 2, n) {
fill(bb, bb + n + 1, 0);
L(j, 1, n) L(k, 0, j) (bb[j] += 1ll * dp[i - 1][k] * dp[i - 1][j - k] % mod) %= mod;
dp[i][1] = 1;
L(j, 1, n) {
int t = 0;
(dp[i][j] += (2ll * j + 1) * bb[j] % mod) %= mod;
(dp[i][j] += (4ll * j + 2) % mod * dp[i - 1][j] % mod) %= mod;
(dp[i][j] += 1ll * j * (j + 1) % mod * bb[j + 1] % mod) %= mod;
(dp[i][j] += 2ll * j * (j + 1) % mod * dp[i - 1][j + 1] % mod) %= mod;
(dp[i][j] += bb[j - 1] % mod) %= mod;
(dp[i][j] += 2ll * dp[i - 1][j - 1] % mod) %= mod;
}
}
printf("%d\n", dp[n][1]);
return 0;
}

题解 CF830D Singer House的更多相关文章

  1. 【做题记录】DP 杂题

    P2577 [ZJOI2004]午餐 $\texttt{solution}$ 想到贪心: 吃饭慢的先打饭节约时间, 所以先将人按吃饭时间从大到小排序. 状态: \(f[i][j]\) 表示前 \(i\ ...

  2. Codeforces 830D Singer House 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF830D.html 题解 考虑用 $dp[i][j]$ 表示深度为 $i$ 的树里,有 $j$ 条路径的方案数 ...

  3. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  4. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  5. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  6. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  7. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  8. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  9. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

随机推荐

  1. Java 实例化接口或抽象类

    1. 实例化接口: 某一天,我们想通过反射调用一个类的方法,但发现方法参数中有一个接口,我们都知道接口不能被实例化,这该怎么办呢? 举例: public class TestLib { public ...

  2. Blazor入手教程(一)前言

    Blazor入手教程(一)前言 结论 最近在学习blazor.得出了这么一个结论: Blazor是一门很值得学习的技术,未来.net下将会有相当多的 web应用使用blazor开发.十分看好这一技术, ...

  3. python+selenium+chromedriver抓取shodan搜索结果

    作用:免积分抓取shodan的搜索结果,并把IP保存为txt 前提: ①shodan会员(ps:黑色星期五打折) ②安装有python27 ③谷歌浏览器(ps:版本一定要跟chromedriver匹配 ...

  4. 不会吧!做了这么久开发还有不会NIO的,看看BAT大佬是怎么用的吧

    前言 在将NIO之前,我们必须要了解一下Java的IO部分知识. BIO(Blocking IO) 阻塞IO,在Java中主要就是通过ServerSocket.accept()实现的. NIO(Non ...

  5. FL studio系列教程(十三):如何在FL Studio步进音序器中制作节奏

    了解了FL Studio一些操作功能后,我们就要去用这些操作功能完成我们想要的作品.所以今天小编就来带领大家在FL Studio的步进音序器中制作出简单的节奏,与此同时大家也会了解到通道的几个基础功能 ...

  6. Linux高可用之Keepalived

    1: 安装keepalived yum install -y keepalived ipvsadm 安装keepalived和LVS管理软件ipvsadm 主机与备机都需要安装 ######修改配置文 ...

  7. Codeforces Round #674 (Div. 3)

    A 除一下就完了. 时间复杂度 \(O\left(t\right)\). B 分在对称线上的矩阵和不在对称线上的矩阵讨论. 时间复杂度 \(O\left(tn^2\right)\). C 肯定是先增加 ...

  8. 【P1972】HH的项链——树状数组+询问离线

    (题面摘自luogu) 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断地收集 ...

  9. Java基础教程——System类

    System类 java.lang.System类代表当前Java程序的运行平台. |-可以做输入输出,垃圾回收:(此处不讲) |-可以获取时间: |-可以获取环境变量: |-可以获取系统信息: |- ...

  10. 交换机Access、Trunk和Hybrid 接口类型及区别

    交换机接口的类型可以是 Access.Trunk和Hybrid. Access类型的接口仅属于一个VLAN,只能接收.转发相应VLAN的帧: Trunk类型接口则默认属于所有VLAN,任何 Tagge ...