shingling算法用于计算两个文档的相似度,例如,用于网页去重。维基百科对w-shingling的定义如下:

In natural language processing a w-shingling is a set of unique "shingles"—contiguous subsequences of tokens in a document —that can be used to gauge the similarity of two documents. The w denotes the number of tokens in each shingle in the set.

维基百科用一个浅显的例子讲解了shingling算法的原理。比如,一个文档

"a rose is a rose is a rose"

分词后的词汇(token,语汇单元)集合是

(a,rose,is,a,rose,is, a, rose)

那么w=4的4-shingling就是集合:

{ (a,rose,is,a), (rose,is,a,rose), (is,a,rose,is), (a,rose,is,a), (rose,is,a,rose) }

去掉重复的子集合:

{ (a,rose,is,a), (rose,is,a,rose), (is,a,rose,is) }

给定shingle的大小,两个文档A和B的相似度 r 定义为:

r(A,B)=|S(A)∩S(B)| / |S(A)∪S(B)|

其中|A|表示集合A的大小。

因此,相似度是介于0和1之间的一个数值,且r(A,A)=1,即一个文档和它自身 100%相似。

转:什么是Shingling算法的更多相关文章

  1. shingling算法——提取特征,m个hash函数做指纹计算,针对特征hash后变成m维向量,最后利用union-find算法计算相似性

    shingling算法用于计算两个文档的相似度,例如,用于网页去重.维基百科对w-shingling的定义如下: In natural language processing a w-shinglin ...

  2. [Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)

    局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论 ...

  3. 基于局部敏感哈希的协同过滤算法之simHash算法

    搜集了快一个月的资料,虽然不完全懂,但还是先慢慢写着吧,说不定就有思路了呢. 开源的最大好处是会让作者对脏乱臭的代码有羞耻感. 当一个做推荐系统的部门开始重视[数据清理,数据标柱,效果评测,数据统计, ...

  4. 局部敏感哈希算法(Locality Sensitive Hashing)

    from:https://www.cnblogs.com/maybe2030/p/4953039.html 阅读目录 1. 基本思想 2. 局部敏感哈希LSH 3. 文档相似度计算 局部敏感哈希(Lo ...

  5. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

  6. 分布式系列文章——Paxos算法原理与推导

    Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资 ...

  7. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  8. 红黑树——算法导论(15)

    1. 什么是红黑树 (1) 简介     上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极 ...

  9. 散列表(hash table)——算法导论(13)

    1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列 ...

随机推荐

  1. mysql 面试100 问(精华学习)。待开始理

    https://juejin.im/post/6850037271233331208 https://juejin.im/entry/6844903681091977229

  2. 【java从入门到精通】day10-Java流程控制2-switch多选择结构

    1.switch多选择结构 switch case语句判断一个变量与一系列值中某个值是否相等,每个值称为一个分支. switch语句中的变量类型可以是: byte.short.int或者char 从j ...

  3. 配置内网访问的TV

    前言 通过内网模式访问tv远程机器 方法 云主机配置 一台云主机,云主机申请两个公网IP 云主机启动两个frps进程绑定到两个内网的ip 客户端配置 远程一台linux跳板机运行frpc,启动两个进程 ...

  4. Java基础—Java方法的调用

    Java方法的调用个主要有以下几种: 1.调用非静态方法 2.调用静态方法 3.方法与方法之间的调用 (1).静态方法内部调用其他方法 (2).非静态方法内部调用 1.调用非静态方法: 非静态方法的调 ...

  5. Tomcat AJP 文件包含漏洞复现(CVE-2020-1938)

    漏洞原理 Tomcat配置了两个Connecto,它们分别是HTTP和AJP. HTTP默认端口为8080,处理http请求:AJP默认端口8009,用于处理 AJP 协议的请求. AJP比http更 ...

  6. bugkuCTFWEB部分WP

    前言 之前做的今天整理下 这个有点乱不建议大家参考我的wp 这个主要是自己看的.部分的我做的时候打不开就没写. 练手地址:https://ctf.bugku.com 矛盾 矛盾考察的是PHP弱类型首先 ...

  7. wordpress 博客环境安装

    WordPress是使用PHP语言开发的博客平台,用户可以在支持PHP和MySQL数据库的服务器上架设属于自己的网站.也可以把 WordPress当作一个内容管理系统(CMS)来使用. 1.数据库环境 ...

  8. Improving Commonsense Question Answering by Graph-based Iterative Retrieval over Multiple Knowledge Sources —— 基于多知识库迭代检索的常识问答系统

    基于多知识库迭代检索的问答系统 论文地址 背景 常识问答任务需要引入外部知识来帮助模型更好地理解自然语言问题,现有的解决方案大都采用两阶段框架: 第一阶段 -- 从广泛的知识来源中找到与给定问题相关的 ...

  9. css3系列之text的常用属性 和 Multi-column(多列)

    text(文本) white-space: word-break word-wrap/overflow-wrap text-align: word-spacing letter-spacing tex ...

  10. 关于Java中的内存屏障

    如何打破双亲委派机制 继承ClassLoader类后重写loadClass方法 如何指定自定义ClassLoader中的parent 默认parent是appClassLoader,可以通过Class ...