【noi 2.6_8786】方格取数(DP)
题意:N*N的方格图每格有一个数值,要求从左上角每步往右或往下走到右下角,问走2次的最大和。
解法:走一次的很好想,而走2次,不可误以为先找到最大和的路,再找剩下的最大和的路就是正解。而应该认清动态规划的实质,定义为最佳解的状态,因此要走的2次都要涵括。
O(n^4)——f[i][j][k][l]表示分别走到(i,j)和(k,l)的最大和。每次从上一步分别走(下,下),(右,右),(右,下),(下,右)的状态推导就好了。f[i][j][k][l]=max(f[i-1][j][k-1][l],f[i][j-1][k][l-1],f[i][j-1][k-1][l],f[i-1][j][k][l-1])+a[i][j]+a[k][l]-((i==j&&k==l)?a[k][l]:0);
这样定义感觉很累赘,表示的是2次分别走可相同或不相同步数到相应坐标的状态。可以用同时走k步来定义状态,而且仔细想想,我们可以进一步思考出:由于只能往下和往右走,那么我们根据走到的坐标就可以知道总共和向下、向右各走了几步。反之,若已知总步数和向右走了几步,坐标也是可以知道的了。
于是可以这样定义状态:
O(n^3)——f[k][i][j]表示走k步2次同时各向右走了i步和j步的最大和。也是每次从上一步推。
注意——不能重复算同一格上的数。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 int a[12][12],f[24][12][12];
8 int mmax(int x,int y) {return x>y?x:y;}
9 int mmin(int x,int y) {return x<y?x:y;}
10 int main()
11 {
12 int n;
13 scanf("%d",&n);
14 memset(a,0,sizeof(a));
15 while (1)
16 {
17 int x,y,d;
18 scanf("%d%d%d",&x,&y,&d);
19 if (!x&&!y&&!d) break;
20 a[x][y]=d;
21 }
22 memset(f,0,sizeof(f));
23 for (int k=1;k<=2*n;k++)
24 for (int i=1;i<=k;i++)
25 for (int j=1;j<=k;j++)
26 {
27 int mx=0,t;
28 mx=mmax(mx,f[k-1][i-1][j]);
29 mx=mmax(mx,f[k-1][i][j-1]);
30 mx=mmax(mx,f[k-1][i-1][j-1]);
31 mx=mmax(mx,f[k-1][i][j]);
32 if (i==j) t=a[k-i+1][i];
33 else t=a[k-i+1][i]+a[k-j+1][j];
34 f[k][i][j]=mx+t;
35 }
36 printf("%d",f[2*n][n][n]);
37 return 0;
38 }
【noi 2.6_8786】方格取数(DP)的更多相关文章
- NOIP2000方格取数[DP]
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
- luogu 1004 方格取数 dp
题目链接 题意 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示: A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 ...
- P1006 传纸条 (方格取数dp)
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...
- neu1458 方格取数 dp解法
题意: 有N * N个格子,每一个格子里有正数或者0,从最左上角往最右下角走,仅仅能向下和向右,一共走两次(即从左上角走到右下角走两趟),把全部经过的格子的数加起来,求最大值SUM,且两次假设经过同一 ...
- hiho 1617 - 方格取数 - dp
题目链接 描述 给定一个NxN的方格矩阵,每个格子中都有一个整数Aij.小Hi和小Ho各自选择一条从左上角格子到右下角格子的路径,要求路径中每一步只能向右或向下移动,并且两条路径不能相交(除了左上右下 ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]
题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...
- HDU 1565 方格取数(1) 轮廓线dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...
- HDU1565 方格取数 &&uva 11270 轮廓线DP
方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 1565 方格取数(1) 状态压缩dp
方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
随机推荐
- sublime python 去掉单行超出字数的白色框框 (E501)
方法一 E501错误:行过长 (大于79个字符),在配置文件里设置 忽略E501错误即可 首选项-->Package Settings-->Anaconda-->Settings - ...
- PAT甲级 Perfect Sequence (25) 记忆化搜索
题目分析: 意思是要求对于一个给出的数组,我们在其中尽可能多选数字,使得所选数字的max <= min * p,而由于数据量较大直接二层循环不加优化实现是不现实的,由题意得知,对于数字序列的子序 ...
- Jenkins上实现Python + Jenkins + Allure Report 接口自动化测试持续集成,最终测试报告用allure-report进行展示
项目介绍 接口功能测试应用:http://www.weather.com.cn/data/cityinfo/<city_code>.html 测试功能:获取对应城市的天气预报 源码:Pyt ...
- LeetCode202. 快乐数
题目 编写一个算法来判断一个数 n 是不是快乐数. 快乐数定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1, 也可能是 无限循环 但始终变不到 ...
- buuctf刷题之旅—web—WarmUp
启动靶机 查看源码发现source.php 代码审计,发现hint.php文件 查看hint.php文件(http://7ab330c8-616e-4fc3-9caa-99d9dd66e191.nod ...
- ORM动态表达式树查询
前言 接口获取参数后,创建返回值模型的条件表达式作为参数,传入使用依赖注入实例化后的业务层. 业务层创建返回值模型的IQUERY后,再使用参数条件表达式.最后进行延迟查询. 代码实现 参数模型Demo ...
- ryu安装
$ python3 -V Python 3.7.2 $ git clone https://github.com/faucetsdn/ryu.git $ cd ryu $ sudo pip3 inst ...
- Server Tracking of Client Session State Changes Connection Management
MySQL :: MySQL 8.0 Reference Manual :: 5.1.12 Connection Management https://dev.mysql.com/doc/refman ...
- Pusher Channels Protocol | Pusher docs https://pusher.com/docs/channels/library_auth_reference/pusher-websockets-protocol
Pusher Channels Protocol | Pusher docs https://pusher.com/docs/channels/library_auth_reference/pushe ...
- (转载)微软数据挖掘算法:Microsoft顺序分析和聚类分析算法(8)
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点 ...