CF662C Binary Table

题意:

给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\)

\(n\le 20, m\le 10^5\)

题解:

可以把每一列看作一个二进制数,这样得到\(m\)个二进制数,记为\(A\),翻转第\(i\)列就相当于把每个二进制数异或上\(1<<i\),由于\(n\)很小,所以枚举所有的翻转组合,一共\(2^n\)种,令\(d(x)\)表示最高位为\(n\)的二进制数中\(0\)和\(1\)数量的最大值,那么答案可以表示为:

\[\sum_{msk=0}^{2^n-1}(\sum_{i=1}^m d(msk\oplus A[i]))
\]

转化一下得到:

\[\sum_{msk=0}^{2^n-1}(\sum_{x\oplus y=msk} d(x) \times c(y))
\]

其中\(c(y)\)表示\(y\)出现的次数

接下来跑\(FWT\)就好了

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 2e6+7;
const int MOD = 998244353;
const int inv2 = (MOD + 1) / 2;
int n, m, A[MAXN], f[MAXN], N, c[MAXN]; void FWT_xor(int *a,int opt){
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k){
int X=a[j+k],Y=a[i+j+k];
a[j+k]=(X+Y)%MOD;a[i+j+k]=(X+MOD-Y)%MOD;
if(opt==-1)a[j+k]=1ll*a[j+k]*inv2%MOD,a[i+j+k]=1ll*a[i+j+k]*inv2%MOD;
}
}
char buf[MAXN];
int main(){
scanf("%d %d",&n,&m);
for(int i = 0; i < n; i++){
scanf("%s",buf+1);
for(int j = 1; j <= m; j++) A[j] ^= ((buf[j]-'0')<<i);
}
N = 1 << n;
for(int i = 0; i < N; i++){
f[i] = __builtin_popcount(i);
f[i] = min(f[i],n-f[i]);
}
for(int i = 1; i <= m; i++) c[A[i]]++;
FWT_xor(f,1); FWT_xor(c,1);
for(int i = 0; i < N; i++) f[i] = 1ll * f[i] * c[i] % MOD;
FWT_xor(f,-1);
cout << *min_element(f,f+N) << endl;
return 0;
}

CF662C Binary Table【FWT】的更多相关文章

  1. CF662C Binary Table 【状压 + FWT】

    题目链接 CF662C 题解 行比较少,容易想到将每一列的状态压缩 在行操作固定的情况下,容易发现每一列的操作就是翻转\(0\)和\(1\),要取最小方案,方案唯一 所以我们只需求出每一种操作的答案 ...

  2. CF662C Binary Table 枚举 FWT

    题面 洛谷题面 (虽然洛谷最近有点慢) 题解 观察到行列的数据范围相差悬殊,而且行的数量仅有20,完全可以支持枚举,因此我们考虑枚举哪些行会翻转. 对于第i列,我们将它代表的01串提取出来,表示为\( ...

  3. CF662C Binary Table (FWT板题)

    复习了一发FWT,发现还挺简单的... 没时间写了,就放一个博客吧:Great_Influence 的博客 注意这一句ans[i]=∑j⊗k=i​f[j]∗dp[k]ans[i]= ∑_{j⊗k=i} ...

  4. [CF662C] Binary Table(FWT)

    题意: https://www.cnblogs.com/cjyyb/p/9065801.html 题解:

  5. [CF662C Binary Table][状压+FWT]

    CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...

  6. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  7. 606. Construct String from Binary Tree 【easy】

    606. Construct String from Binary Tree [easy] You need to construct a string consists of parenthesis ...

  8. 543. Diameter of Binary Tree【Easy】【二叉树的直径】

    Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...

  9. CF662C Binary Table FWT

    传送门 \(N \leq 20\)很小诶 一个暴力的思路是枚举行的翻转状态然后在列上贪心 复杂度为\(O(2^NM)\)显然过不去 考虑到可能有若干列的初始状态是一样的,那么在任意反转之后他们贪心的策 ...

随机推荐

  1. PMP知识领域

    · 十大知识领域 整合-项目整合管理 识别.定义.组合.统一和协调个项目管理过程组的各种过程和活动而展开的活动与过程. 整合:统一.合并.沟通和简历联系:贯穿项目始终 七个过程组 一.制定项目章程(启 ...

  2. 【JS学习】for-in与for-of

    前言:本博客系列为学习后盾人js教程过程中的记录与产出,如果对你有帮助,欢迎关注,点赞,分享.不足之处也欢迎指正,作者会积极思考与改正. 总述: 名称 遍历 适用 for-in 索引 主要建议白能力对 ...

  3. python3.6安装教程

    Python代码要运行,必须要有Python解释器.Python3.x的版本是没有什么区别的,这里以3.6版本来演示安装的过程.这里只介绍Windows环境下的安装. 下载安装程序 Python官方的 ...

  4. Python列表推导式玩法

    前言 列表做为python的基础,是必须学习的语法之一.一些基础的之前已经是反复温习和使用了,今天我们来学习它的进阶版-->列表推导式. 列表推导式: 优点:是将所有的值一次性加载到内存中,相比 ...

  5. 2019 Eclipse的下载与安装教程

    Eclipse 是一个开放源代码的.基于Java的可扩展开发平台,可以免费下载使用. 首先我们先进入这个软件的官网:https://www.eclipse.org/ 点击这个网页download下载: ...

  6. 【Linux】以001格式循环到100保证位数是3位

    这里有一个前提,要保证数位是相同的 确实数字是1-100  但是数位是不同的,需要统一一下位数必须是3位的 这个问题在很多论坛上用的都是printf这个命令,确实可以达到这个效果,但是没有我下面介绍的 ...

  7. golang语言初体验

    Go(又称 Golang)是 Google 的 Robert Griesemer,Rob Pike 及 Ken Thompson 开发的一种静态强类型.编译型语言.Go 语言语法与 C 相近,但功能上 ...

  8. 在Firefox上使用Chrome的crx扩展程序

    假如你喜欢使用Firefox火狐浏览器,可是发现有个很喜欢很想用的扩展只发布了支持Chrome的crx格式--Firefox从57版以后使用了WebExtension API作为新附加组件的开发标准, ...

  9. vue-cli3x4x修改本地端口port

    一.推荐方法 "scripts": { "serve": "vue-cli-service serve --port 3000", &quo ...

  10. uni-app开发经验分享十四:小程序超过2M限制的方法——分包加载

      起初小程序上线时,微信限制了代码包不能超过1MB,后来功能变大变成了2M了,限制大小是出于对小程序启动速度的考虑,希望用户在使用任何一款小程序时,都能获得一种"秒开"体验.但是 ...