导言

针对现有工作中存在的错误伪标签问题,文章通过优化样本间的相似性度量和伪标签置信度评估策略来改善这个问题,从而提供模型性能。具体地,文章提出了方差置信度的概念,并设计了方差二次采样算法将方差置信度和距离置信度结合起来作为采样准则,同时还提出了方差衰减策略来更好了优化选择出来的伪标签样本。最终,该方法将MARS数据集上的mAP和Rank1分别提高了 3.94%和4.55%。

引用

@article{DBLP:journals/jvca/ZhaoYYHYZ20,

author = {Jing Zhao and

Wenjing Yang and

Mingliang Yang and

Wanrong Huang and

Qiong Yang and

Hongguang Zhang},

title = {One-shot video-based person re-identification with variance subsampling

algorithm},

journal = {Comput. Animat. Virtual Worlds},

volume = {31},

number = {4-5},

year = {2020}

}

相关链接

原文链接:https://onlinelibrary.wiley.com/doi/10.1002/cav.1964

或者下方↓公众号后台回复“VSA”,即可获得论文电子资源。

解决了什么问题

Previous works propose the distance-based sampling for unlabeled datapoints to address the few-shot person re-identification task, however, many selected samples may be assigned with wrong labels due to poor feature quality in these works, which negatively affects the learning procedure.

主要贡献和创新点

  • We propose the variance confidence to measure the credibility of pseudo-labels, which can be widely used as a general similarity measurement.
  • We propose a novel VSA(variance subsampling algorithm) to improve the accuracy of pseudo-labels for selected samples. It combines distance confidence and variance confidence as the sampling criterion, and adopt a variance decay strategy as the sampling strategy.

创新点主要有三个:

  • 一是提出了方差置信度(variance confidence)的概念
  • 二是提出了VSA(方差二次采样算法)
  • 三是提出了方差衰减策略(variance decay strategy)。

基本框架



The dataset extension process. Both labeled and unlabeled samples are extracted into the feature space through the backbone network in step 1. As shown in feature space (a), the gray points indicate unlabeled samples, and the colored hollow points indicate labeled samples. Different colors indicate different person identity. Then label estimation is performed according to the criterion that the unlabeled sample has the same label as the nearest labeled sample in step 2. We call the sample after label estimation a pseudo-label sample, which is the colored solid point in the feature space (b). Finally, the pseudo-label samples with higher confidence are preferred, which are closer to the labeled samples in feature space (c)

整体框架采用监督训练和数据扩展交叉迭代进行的模式。数据扩展的过程如上图所示,具体包括了特征提取、标签估计和伪标签样本采样三个环节。

提出的方法

01 variance confidence方差置信度



A distribution situation in the feature space. U1 and U2 represent two unlabeled samples, and L1 and L2 are the two labeled samples with the closest distance to both U1 and U2 in the feature space. di,i∈[1,4], represent the Euclidean distance between samples and satisfy Equation (7). The solid line represents the distance between the unlabeled sample and its nearest labeled sample. While U1 is similar to L1, it is also similar to L2 with the same extent. On the contrary, although U2 is slightly similar to L1, it is very different from L2. Therefore, it is more believable that U2 is more likely than U1 to fall into the same category as L1

作者举例了特征空间中的一种分布情况。 U1和U2是无标注样本,L1和L2是距离U1和U2最近的带标注样本。di表示样本之间的欧几里得距离,且满足\(d_1<d_2<d_3<d_4\)。 如果仅根据距离来度量样本标签的可靠性的话,那U1优于U2(因为d1<d3)。 但作者认为,当一个样本(U1)同时和两个不同的样本(L1和L2)相似的时候(d1和d2相差很小),那这个样本就谁都不像了。

作者用无标签样本与其距离最近的两个带标注样本的距离方差来表示方差置信度,且方差越大,置信度越高。

02 Variance Subsampling Algorithm 方差二次采样算法

The sampling criterion of variance subsampling algorithm. Hollow points in the feature space represent labeled samples, and solid points represent pseudo-label samples. The first sampling is based on the distance confidence. The number of sampling is extended to e, corresponding to the range of the red squares and circles in the figure. The second sampling is based on the variance confidence, and the number of samples is restored to ns, which corresponds to the range of the yellow box and the circle in the figure.

作者通过二次采样的形式,将距离置信度和方差置信度结合了起来,作为采样准则。

03 Variance decay strategy 方差衰减策略



The partial distribution of the real feature space. Colors is used to distinguish different people identity, and shapes is used to distinguish the camera. Black dots in the center of the sample indicate that this is the original labeled sample. The distribution in the first iteration is relatively uniform, while the distribution after the seventh iteration has shown a clustering distribution

作者在实验过程中可视化了特征空间的真实分布情况。 发现模型训练到中后期时,提取出的特征空间已经呈现出了聚类分布。

Obviously, in the case of the feature distribution of model 7 in Figure 5, the situation described in Figure 3 will hardly occur. This shows that the situation described in Figure 3 is gradually reduced during the iteration process. Therefore, a variance decay strategy is proposed as the sampling strategy. A stopping factor

【VSA】One-shot video-based person re-identification with variance subsampling algorithm的更多相关文章

  1. 【Egret】里使用video标签

    egret里使用Html5的Video标签 egret里使用Html5的Video标签的demo: 链接:http://pan.baidu.com/s/1nuNyqRR 密码:x58i //----- ...

  2. 【转】视频H5 video最佳实践

    原文地址:https://github.com/gnipbao/iblog/issues/11 随着 4G 的普遍以及 WiFi 的广泛使用,手机上的网速已经足够稳定和高速,以视频为主的 HTML5 ...

  3. 【转】如何修改 video 样式

    我们这里说的“修改 video 样式”并不是要自己实现一套 controls,而是尝试修改 video 的默认样式 隐藏全屏按钮 这个很容易查到 video::-webkit-media-contro ...

  4. 【HTML5】HTML5中video元素事件详解(实时监测当前播放时间)

    html 代码..video后边几个元素,可处理ios 系统的兼容性 <video id="myVideo" controls="controls" po ...

  5. 【转载】HTML5 Audio/Video 标签,属性,方法,事件汇总

    <audio> 标签属性: src:音乐的URL preload:预加载 autoplay:自动播放 loop:循环播放 controls:浏览器自带的控制条 Html代码  <au ...

  6. 【转】Android HTML5 Video视频标签自动播放与自动全屏问题解决

    为了解决 HTML5Video视频标签自动播放与全屏问题,在网上找了很多相关资料,网上也很多关于此问题解决方法,但几乎都不能解决问题,特别对各大视频网站传回来的html5网页视频自动播放与全屏问题,我 ...

  7. 【sqli-labs】 less53 GET -Blind based -Order By Clause -String -Stacked injection(GET型基于盲注的字符型Order By从句堆叠注入)

    http://192.168.136.128/sqli-labs-master/Less-53/?sort=1';insert into users(id,username,password) val ...

  8. 【sqli-labs】 less52 GET -Blind based -Order By Clause -numeric -Stacked injection(GET型基于盲注的整型Order By从句堆叠注入)

    出错被关闭了 http://192.168.136.128/sqli-labs-master/Less-52/?sort=1' http://192.168.136.128/sqli-labs-mas ...

  9. 【sqli-labs】 less51 GET -Error based -Order By Clause -String -Stacked injection(GET型基于错误的字符型Order By从句堆叠注入)

    less50的字符型版本,闭合好引号就行 http://192.168.136.128/sqli-labs-master/Less-51/?sort=1';insert into users(id,u ...

随机推荐

  1. ArrayList扩容机制

    一.先从 ArrayList 的构造函数说起 ArrayList有三种方式来初始化,构造方法源码如下: 1 /** 2 * 默认初始容量大小 3 */ 4 private static final i ...

  2. 简单入门Rabbitmq

    什么是RabbitMQ RabbitMQ是一个开源的AMQP实现,服务器端用Erlang语言编写.支持多种客户端,如:Python.Ruby..NET.Java.JMS.C.PHP.ActionScr ...

  3. 用spring-retry注解自动触发重试方法

    原文地址:https://www.jianshu.com/p/ee02d6125113 需求背景: 有些时候我们再调用一些第三方服务的时候,从第三方那边拉数据. 但是第三方服务不是100%稳定的,有些 ...

  4. 「APIO2015」巴邻旁之桥 Palembang Bridges

    贪心 先转化一下题意 首先如果一个人的家和办公室在河同一侧那么建桥的时候不用去考虑它,最终把答案加上即可 在河两侧的家和办公室互换不影响答案,那么可以把这个抽象到一个区间$[l,r]$,距离就是$|l ...

  5. Cuda常用概念及注意点

    线程的索引计算 只需要知并行线程的初始索引,以及如何确定递增的量值,我们希望每个并行线程从不同的索引开始,因此就需要对线程索引和线程块索引进行线性化,每个线程的其实索引按照以下公式来计算: int t ...

  6. Docker系列03—Docker 存储卷

    一.存储卷介绍 1.1 背景 Docker 的 AFUS 分层文件系统 docker镜像由多个只读层叠加而成,启动容器时,docker会加载只读镜像层并在镜像栈顶部加一个读写层: 如果运行的容器修改了 ...

  7. 利用MultipartFile来进行文件上传

    这个例子实在SpringMVC的基础上完成的,因此在web.xml中需要配置 web.xml <!-- 配置Spring MVC的入口 DispatcherServlet,把所有的请求都提交到该 ...

  8. 总结distinct、group by 、row_number()over函数用法及区别

    distinct和group by 是一样的,查询去重,只能是全部重复的,也可以理解为针对单例,因为一行有一个字段不一样,他们就会认为这两行内容是不重复的.但是使用row_number()over这个 ...

  9. tp3.2 php sdk上传七牛云

    //获取上传token Vendor('sdk.autoload'); $accessKey='********'; $secretKey='*******'; $auth=new \Qiniu\Au ...

  10. JS多物体宽度运动案例

    任务 对于每一个Div区块,鼠标移入,宽度逐渐变宽,最宽值为400px,当鼠标移除时,宽度逐渐减小,最小值为100px. 任务提示: (1)多物体运动的定时器需要需要每个物体上同时最多只能开一个定时器 ...