E CF R 85 div2 1334E. Divisor Paths
LINK:Divisor Paths
考试的时候已经想到结论了 可是质因数分解想法错了 导致自闭。
一张图 一共有D个节点 每个节点x会向y连边 当且仅当y|x,x/y是一个质数。
设f(d)表示d的约数个数 那么x->y的无向边的边权为f(x)-f(y);
每次询问两个点x,y之间的最短路径的条数有多少条,保证x|D,y|D.
不妨假设x>y.当y|x时容易发现y只需要每次在保证次数大于x的质因子上不断将自己本身的一个质数因子去掉即可。
不难发现 此时最短路长度为1 因为不管中间去的方式如何最后得到的是同一个值。
可以发现 此时我们完全可以把 y当成1 把x当成x/y 来计算。
可以发现x不会增加一个质因子 因为最后还是要减掉这是不优的。
方案容易看出是排列数/每个质因子的阶乘。
考虑当y不整除x的时候
有几种选择 x->gcd(x,y)->y x->lcm(x,y)->y.
考虑第一种 x不可能往比gcd更小的点走 因为那样走只是在白白的增加恭喜罢了 同理第二种 x不会往比lcm更大的走。
可以发现 gcd(x,y)->y和x->lcm(x,y)中 显然前者一定小于后者。
考虑 x->gcd(x,y) 和 lcm(x,y)->y 中 也很显然前者一定小于后者。
再考虑路径x->gcd(x,y)这个东西 可以证明中途的时候去跑到y的质因子上面带来的结果会更差。
综上算出两条路径的方案之积即可。
考试的时候 sb的地方是 发现给出的x y质因数分解复杂度会高达1e7发现做不了。
但是我们考虑直接拿质数来筛 因为都是D的因数 所以拿D里面的质因数筛即可。
可以发现D里面的质因数不超过13个。
这样只用暴力分解D即可、
const ll MAXN=60;
ll D,n,top,maxx;
ll c[MAXN],w[MAXN],s[MAXN];
ll fac[MAXN],inv[MAXN];
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll ksm(ll b,ll p){ll cnt=1;while(p){if(p&1)cnt=cnt*b%mod;p=p>>1;b=b*b%mod;}return cnt;}
inline void prepare()
{
fac[0]=1;
rep(1,maxx,i)fac[i]=fac[i-1]*i%mod;
inv[maxx]=ksm(fac[maxx],mod-2);
fep(maxx-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
}
inline ll solve(ll x)
{
ll cnt=0;
rep(1,top,i)
{
c[i]=0;
if(x%s[i]==0)while(x%s[i]==0)++c[i],x/=s[i];
cnt+=c[i];
}
ll ans=fac[cnt];
rep(1,top,i)ans=ans*inv[c[i]]%mod;
return ans;
}
signed main()
{
freopen("1.in","r",stdin);
get(D);ll cc=D;
for(ll i=2;i*i<=cc;++i)
{
if(cc%i==0)
{
s[++top]=i;
while(cc%i==0)cc/=i,++w[top];
}
}
if(cc>1)s[++top]=cc,++w[top];
rep(1,top,i)maxx+=w[i];
get(n);prepare();
rep(1,n,i)
{
ll x,y;
get(x);get(y);
ll gg=gcd(x,y);
putl(solve(x/gg)*solve(y/gg)%mod);
}
return 0;
}
E CF R 85 div2 1334E. Divisor Paths的更多相关文章
- CF R 639 div2 F Review 贪心 二分
LINK:Résumé Review 这道题让我眼前一亮没想到二分这么绝. 由于每个\(b_i\)都是局部的 全局只有一个限制\(\sum_{i=1}^nb_i=k\) 所以dp没有什么用 我们只需要 ...
- CF R 635 div2 1337D Xenia and Colorful Gems 贪心 二分 双指针
LINK:Xenia and Colorful Gems 考试的时候没想到一个很好的做法. 赛后也有一个想法. 可以考虑答案的样子 x,y,z 可以发现 一共有 x<=y<=z,z< ...
- CF R 632 div2 1333F Kate and imperfection
赛后看了半天题 才把题目看懂 英语水平极差. 意思:定义一个集合S的权值为max{gcd(a,b)};且\(a\neq b\) 这个集合可以从1~n中选出一些数字 求出当集合大小为k时的最小价值. 无 ...
- CF R 632 div2 1333D Challenges in school №41
LINK:Challenges in school №41 考试的时候读错题了+代码UB了 所以wa到自闭 然后放弃治疗. 赛后发现UB的原因是 scanf读int类型的时候 宏定义里面是lld的类型 ...
- CF R 630 div2 1332 F Independent Set
LINK:Independent Set 题目定义了 独立集和边诱导子图.然而和题目没有多少关系. 给出一棵树 求\(\sum_{E'\neq \varnothing,E'\subset E}w(G( ...
- CF Round #580(div2)题解报告
CF Round #580(div2)题解报告 T1 T2 水题,不管 T3 构造题,证明大约感性理解一下 我们想既然存在解 \(|a[n + i] - a[i]| = 1\) 这是必须要满足的 既然 ...
- CF round #622 (div2)
CF Round 622 div2 A.简单模拟 B.数学 题意: 某人A参加一个比赛,共n人参加,有两轮,给定这两轮的名次x,y,总排名记为两轮排名和x+y,此值越小名次越前,并且对于与A同分者而言 ...
- CF R 635 div1 C Kaavi and Magic Spell 区间dp
LINK:Kaavi and Magic Spell 一打CF才知道自己原来这么菜 这题完全没想到. 可以发现 如果dp f[i][j]表示前i个字符匹配T的前j个字符的方案数 此时转移变得异常麻烦 ...
- 【CF】323 Div2. D. Once Again...
挺有意思的一道题目.考虑长度为n的数组,重复n次,可以得到n*n的最长上升子序列.同理,也可以得到n*n的最长下降子序列.因此,把t分成prefix(上升子序列) + cycle(one intege ...
随机推荐
- 关于ganymed-ssh2版本262和build210的SCPClient类的区别
ganymed-ssh2是通过java使用ssh连接服务器的工具库,先上两个版本的pom文件配置: <!--ssh连接linux--> <!-- https://mvnreposit ...
- 洛谷 P3627 [APIO2009]抢掠计划 Tarjan缩点+Spfa求最长路
题目地址:https://www.luogu.com.cn/problem/P3627 第一次寒假训练的结测题,思路本身不难,但对于我这个码力蒟蒻来说实现难度不小-考试时肛了将近两个半小时才刚肛出来. ...
- 从0开始,手把手教你用Vue开发一个答题App01之项目创建及答题设置页面开发
项目演示 项目演示 项目源码 项目源码 教程说明 本教程适合对Vue基础知识有一点了解,但不懂得综合运用,还未曾使用Vue从头开发过一个小型App的读者.本教程不对所有的Vue知识点进行讲解,而是手把 ...
- 从0开始,手把手教你使用React开发答题App
项目演示地址 项目演示地址 项目源码 项目源码 其他版本教程 Vue版本 小程序版本 项目代码结构 前言 React 框架的优雅不言而喻,组件化的编程思想使得React框架开发的项目代码简洁,易懂,但 ...
- How to install chinese input method
在Ubuntu中安装中文输入法确实比较麻烦,特别是英文版的Ubuntu系统 Ubuntu上的输入法主要有小小输入平台(支持拼音/二笔/五笔等),Fcitx,Ibus,Scim等.其中Scim和Ib ...
- REACT——虚拟DOM
深入了解虚拟DOM 实际顺序 jsx->createElemnt ->虚拟DOM(JS 对象)->真实DOM 虚拟DOM中的Diff算法 :当react查找差异的时候,就会采用dif ...
- Java多线程详解总结
一.基本概念 程序(program): 是为完成特定任务.用某种语言编写的一组指令的集合.即指一 段静态的代码,静态对象. 进程(process):是程序的一次执行过程,或是正在运行的一个程序.是一个 ...
- 查看锁信息 v$lock 和 v$locked_object
查看锁住的对象及会话id,serial# select a.* from (SELECT o.object_name, l.locked_mode, ...
- 012.Nginx负载均衡
一 负载均衡概述 1.1 负载均衡介绍 负载均衡是将负载分摊到多个操作单元上执行,从而提高服务的可用性和响应速度,带给用户更好的体验.对于Web应用,通过负载均衡,可以将一台服务器的工作扩展到多台服务 ...
- Python3 装饰器解析
第6章 函数 6.1 函数的定义和调用 6.2 参数传递 6.3 函数返回值 6.4 变量作用域 6.5 匿名函数(lambda) 6.6 递归函数 6.7 迭代器 6.8 生成器 6.9 装饰器 6 ...