numpy get started

导入numpy库,并查看numpy版本

import numpy as np
np.__version__
'1.14.0'

一、创建ndarray

1. 使用np.array()由python list创建

参数为列表:

[1, 4, 2, 5, 3]

注意:

  • numpy默认ndarray的所有元素的类型是相同的
  • 如果传进来的列表中包含不同的类型,则统一为同一类型,优先级:str>float>int
data = [1, 2, 3]
nd = np.array(data)
nd
array([1, 2, 3])
type(nd)
#ndarray 这样的数据
#查看整体的类型
numpy.ndarray
type(data)
list
nd.dtype
#查看数据的类型
dtype('int32')
nd1 = np.array([1,2,3.2])
nd1.dtype
#统一的原则 int < float < string
dtype('float64')
nd2 = np.array([1,2,3.4, "qwe"])
nd2.dtype
dtype('<U32')
nd3 = np.array([[1,2],[3,4]])
nd3
array([[1, 2],
[3, 4]])
nd4 = np.array([[[1,2],[3,4]],[[1,2],[3,4]]])
nd4
array([[[1, 2],
[3, 4]], [[1, 2],
[3, 4]]])
nd4.shape
(2, 2, 2)
#扩展
import matplotlib.pyplot as plt
cat = plt.imread("./cat.jpg")
type(cat)
numpy.ndarray
plt.imshow(cat[:300,:200])
plt.show()

cat.shape
#查看形状的 rgb jpg 0-255
(456, 730, 3)
cat
#三维的数据
array([[[231, 186, 131],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 85, 43, 44]], [[232, 187, 132],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 84, 42, 43]], [[232, 187, 132],
[233, 188, 133],
[233, 188, 133],
...,
[ 99, 53, 53],
[ 91, 47, 46],
[ 83, 41, 42]], ..., [[199, 119, 82],
[199, 119, 82],
[200, 120, 83],
...,
[189, 99, 65],
[187, 97, 63],
[187, 97, 63]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[186, 96, 62],
[188, 95, 62]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[188, 95, 62],
[188, 95, 62]]], dtype=uint8)

2. 使用np的routines函数创建

包含以下常见创建方法:

  1. np.ones(shape, dtype=None, order='C')
ones = np.ones((456,730,3), dtype = "float")
#shape 形状, 元祖 ones
array([[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], ..., [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]])
plt.imshow(ones)
plt.show()
#0-1 0 代表黑色的 1 白色的 png格式的图片

#切片赋值
ones[::,::,1:] = 0
ones
array([[[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], ..., [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]]])
plt.imshow(ones)
plt.show()
#1 0 0

ones[::,::,0] = 0.3
ones
array([[[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], ..., [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]]])
plt.imshow(ones)
plt.show()

  1. np.zeros(shape, dtype=float, order='C')
zeros = np.zeros((456,730,3), dtype = "float")
zeros
array([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], ..., [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]])
plt.imshow(zeros)

<matplotlib.image.AxesImage at 0x9992e80>

  1. np.full(shape, fill_value, dtype=None, order='C')
nd4 = np.full(12, fill_value=1024)
nd4
array([1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024])
#变形,注意 你要变形的数据有多少? 不能超过变形总的长度
#cannot reshape array of size 12 into shape (3,5)
nd5 = nd4.reshape((3,5))
nd5
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-40-0baec20d7413> in <module>()
1 #变形
----> 2 nd5 = nd4.reshape((3,5))
3 nd5 ValueError: cannot reshape array of size 12 into shape (3,5)
nd5 = nd4.reshape((1,12))
nd5
#reshape在咱们以后的学习经常使用
array([[1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024]])
#扩展
cat
array([[[231, 186, 131],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 85, 43, 44]], [[232, 187, 132],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 84, 42, 43]], [[232, 187, 132],
[233, 188, 133],
[233, 188, 133],
...,
[ 99, 53, 53],
[ 91, 47, 46],
[ 83, 41, 42]], ..., [[199, 119, 82],
[199, 119, 82],
[200, 120, 83],
...,
[189, 99, 65],
[187, 97, 63],
[187, 97, 63]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[186, 96, 62],
[188, 95, 62]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[188, 95, 62],
[188, 95, 62]]], dtype=uint8)
cat.shape
(456, 730, 3)
#需求:把猫的图片颠倒一下
cat2 = cat[::-1,::-1,::]
plt.imshow(cat2)
<matplotlib.image.AxesImage at 0x99d7eb8>

  1. np.eye(N, M=None, k=0, dtype=float)

    对角线为1其他的位置为0
#产生一个  单元矩阵
np.eye(5)
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])
#每一个有解的矩阵  到最后都可以化成单元矩阵     满秩矩阵

2x + 3y + 4z = 12
4x + 7y + 8z = 32 2 3 4
4 7 8 => 最后化成单元矩阵 是没办法化成的单元矩阵
4 6 8
  1. np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
#lin  linear 线性的
np.linspace(0,10,num = 13)
array([ 0.        ,  0.83333333,  1.66666667,  2.5       ,  3.33333333,
4.16666667, 5. , 5.83333333, 6.66666667, 7.5 ,
8.33333333, 9.16666667, 10. ])
np.log2(4)
2.0
np.logspace(-3,1,2)
array([1.e-03, 1.e+01])
  1. np.arange([start, ]stop, [step, ]dtype=None)
#我会经常写
np.arange(start = 5, stop = 10, step = 2,dtype = "float")
array([5., 7., 9.])
np.arange(0,150,10)
array([  0,  10,  20,  30,  40,  50,  60,  70,  80,  90, 100, 110, 120,
130, 140])
  1. np.random.randint(low, high=None, size=None, dtype='l')
np.random.randint(0,150,size = 10)
array([ 57, 116, 133,  84, 141,  32,  63,  91,  93,  16])
dog = np.random.randint(0,255,size = (456,730,3))
dog.shape
(456, 730, 3)
cat.dtype
dtype('uint8')
dog.dtype
dtype('int32')
#数据类型转换
dog = dog.astype('uint8')
plt.imshow(dog)
<matplotlib.image.AxesImage at 0xfcca828>

  1. np.random.randn(d0, d1, ..., dn)

标准正太分布

np.random.randn(10,2,1)
#正太分布会搞出来数据,是两边低,中间高的数据
array([[[ 1.39438673],
[-0.78456615]], [[-0.59132977],
[ 2.23663625]], [[ 0.61258477],
[-0.84729158]], [[ 1.37855508],
[ 1.697815 ]], [[-0.06004384],
[ 0.98147252]], [[-1.20190404],
[-0.77774525]], [[ 1.34400589],
[ 0.23112796]], [[-0.31579586],
[-0.11644608]], [[-0.11822406],
[ 0.26001606]], [[ 0.03766789],
[ 0.80169127]]])

9)np.random.normal(loc=0.0, scale=1.0, size=None)

#只是需要知道他可以搞出来数据
np.random.normal(loc = 175, scale =10,size = 10 )
array([176.45148898, 179.9089715 , 173.65923279, 172.36118888,
169.66272673, 158.76980334, 165.3742424 , 173.52898147,
175.84535943, 183.92875259])
  1. np.random.random(size=None)

生成0到1的随机数,左闭右开

np.random.random(size = (2,2))

array([[0.64468214, 0.54496107],
[0.20529068, 0.0482465 ]])

使用随机数成成一张图片

二、ndarray的属性

4个必记参数:

ndim:维度

shape:形状(各维度的长度)

size:总长度

dtype:元素类型

cat = plt.imread("./cat.jpg")
cat
array([[[231, 186, 131],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 85, 43, 44]], [[232, 187, 132],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 84, 42, 43]], [[232, 187, 132],
[233, 188, 133],
[233, 188, 133],
...,
[ 99, 53, 53],
[ 91, 47, 46],
[ 83, 41, 42]], ..., [[199, 119, 82],
[199, 119, 82],
[200, 120, 83],
...,
[189, 99, 65],
[187, 97, 63],
[187, 97, 63]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[186, 96, 62],
[188, 95, 62]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[188, 95, 62],
[188, 95, 62]]], dtype=uint8)
cat.ndim
#dimension 维度的意思
3
cat.shape
#这个每天都要用,特别是数据分析
(456, 730, 3)
cat.size
998640
456*730*3
998640
cat.dtype

dtype('uint8')

三、ndarray的基本操作

1. 索引

一维与列表完全一致

多维时同理

l = [1,2,3,4,5,6]
l[-1]
#list
6
nd = np.random.randint(0,100,size = 12)
nd[2]
97
nd = np.random.randint(0,100,size =(4,4))
nd

array([[48, 85, 53, 22],
[24, 36, 26, 31],
[38, 26, 56, 47],
[22, 80, 50, 9]])
nd[0, 1]
#通过索引取出来数据
85

根据索引修改数据

nd[2,2] = 2100
nd
array([[  48,   85,   53,   22],
[ 24, 36, 26, 31],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])

2. 切片

一维与列表完全一致

多维时同理

nd
array([[  48,   85,   53,   22],
[ 24, 36, 26, 31],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])
nd[:-2]
array([[48, 85, 53, 22],
[24, 36, 26, 31]])
nd[:-2] = 10
nd
array([[  10,   10,   10,   10],
[ 10, 10, 10, 10],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])
np.random.randint(0,10,size = (2,1))
array([[2],
[8]])
nd[:2, 1:3] = np.random.randint(0,10,size = (2,1))
nd
#广播机制,如果在赋值的时候,不充分,numpy会自动进行复制
array([[  10,    0,    0,   10],
[ 10, 8, 8, 10],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])

将数据反转,例如[1,2,3]---->[3,2,1]

nd1 = np.random.randint(0,100,size = 11)
nd1
array([53,  0, 12, 83, 98, 46, 36, 96, 21, 51, 34])
nd1[::-1]
array([34, 51, 21, 96, 36, 46, 98, 83, 12,  0, 53])
#::叫步幅
nd1[::-2]
array([34, 21, 36, 98, 12, 53])
nd
array([[  10,    0,    0,   10],
[ 10, 8, 8, 10],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])
nd[::1,::-1]
array([[  10,    0,    0,   10],
[ 10, 8, 8, 10],
[ 47, 2100, 26, 38],
[ 9, 50, 80, 22]])
nd[::-1,::-1]
array([[   9,   50,   80,   22],
[ 47, 2100, 26, 38],
[ 10, 8, 8, 10],
[ 10, 0, 0, 10]])

两个::进行切片


3. 变形

使用reshape函数,注意参数是一个tuple!

#扩展
cat = plt.imread("./cat.jpg")
cat_f = cat/255.0
plt.imshow(cat_f)
<matplotlib.image.AxesImage at 0xd380b70>

fish = plt.imread("./fish.png")
plt.imshow(fish)
<matplotlib.image.AxesImage at 0xd2b3940>

fish
array([[[0.29411766, 0.39215687, 0.46666667],
[0.46666667, 0.4862745 , 0.49803922],
[0.4627451 , 0.4862745 , 0.5019608 ],
...,
[0.4627451 , 0.48235294, 0.49803922],
[0.45882353, 0.47843137, 0.49803922],
[0.21960784, 0.33333334, 0.44313726]], [[0.2901961 , 0.3764706 , 0.44313726],
[0.627451 , 0.6156863 , 0.60784316],
[0.85490197, 0.85490197, 0.84705883],
...,
[0.8627451 , 0.85882354, 0.8509804 ],
[0.8509804 , 0.8509804 , 0.84313726],
[0.30588236, 0.42352942, 0.5254902 ]], [[0.28235295, 0.37254903, 0.4392157 ],
[0.6666667 , 0.6627451 , 0.654902 ],
[1. , 1. , 1. ],
...,
[1. , 1. , 1. ],
[1. , 1. , 1. ],
[0.35686275, 0.4745098 , 0.5764706 ]], ..., [[0.4509804 , 0.45882353, 0.45882353],
[0.6509804 , 0.6509804 , 0.64705884],
[0.99215686, 0.99215686, 0.9843137 ],
...,
[1. , 0.99607843, 0.9882353 ],
[0.9843137 , 0.9882353 , 0.98039216],
[0.36078432, 0.49019608, 0.6 ]], [[0.4509804 , 0.45882353, 0.45882353],
[0.6509804 , 0.6509804 , 0.64705884],
[0.99215686, 0.99215686, 0.9843137 ],
...,
[1. , 0.99607843, 0.9882353 ],
[0.9843137 , 0.9882353 , 0.98039216],
[0.36078432, 0.49019608, 0.6 ]], [[0.44705883, 0.45490196, 0.45490196],
[0.65882355, 0.654902 , 0.654902 ],
[1. , 1. , 1. ],
...,
[1. , 1. , 1. ],
[1. , 1. , 1. ],
[0.36078432, 0.49411765, 0.6 ]]], dtype=float32)
#拿出来鱼头
fish_head = fish[50:175, 50:180]
plt.imshow(fish_head)
<matplotlib.image.AxesImage at 0xd41bd30>

#把猫挑选出来一部分,把鱼头贴上去
cat_f[120:245,220:350] = fish_head
# cat.flags.writeable = True
# fish.flags.writeable = True plt.imshow(cat_f)
#肯定会报错,一个是png 一个是jpg
<matplotlib.image.AxesImage at 0xd4be9b0>

4. 级联

  1. np.concatenate()

    级联需要注意的点:
  • 级联的参数是列表:一定要加中括号或小括号
  • 维度必须相同
  • 形状相符
  • 【重点】级联的方向默认是shape这个tuple的第一个值所代表的维度方向
  • 可通过axis参数改变级联的方向
import numpy as np
nd1 = np.random.randint(0,10,size = (4,6))
nd2 = np.random.randint(50,100,size =(2,6)) np.concatenate([nd1, nd2])
#第一个参数 可以传一个list或者tuple 第二个参数是轴 axis
#默认的轴等于0 行上面进行级联
array([[ 3,  0,  8,  6,  9,  4],
[ 8, 4, 4, 1, 0, 1],
[ 4, 2, 5, 9, 4, 9],
[ 0, 6, 6, 3, 5, 4],
[50, 84, 96, 68, 78, 76],
[96, 51, 61, 65, 67, 57]])
nd1 = np.random.randint(10,20,size = (3,4))
nd2 = np.random.randint(40,60,size = (3,2))
np.concatenate((nd1,nd2), axis = 1)
array([[12, 17, 14, 12, 56, 44],
[13, 17, 17, 17, 51, 49],
[13, 16, 18, 15, 45, 59]])
  1. np.hstack与np.vstack

    水平级联与垂直级联,处理自己,进行维度的变更
nd3 = np.random.randint(0,10,size = (10,1))
nd3
array([[8],
[5],
[1],
[2],
[3],
[8],
[0],
[7],
[9],
[5]])
#hstack  水平级联
#horizontal :水平的
np.hstack(nd3)
#变成水平的之后,维度也变了
array([8, 5, 1, 2, 3, 8, 0, 7, 9, 5])
#vstack  垂直级联
#vertical :垂直的
nd4 = np.random.randint(-10,10,size = 10)
nd4
array([-10,  -2,   3,   7,   1,   6,   6,  -7,   0,  -1])
np.vstack(nd4)
array([[-10],
[ -2],
[ 3],
[ 7],
[ 1],
[ 6],
[ 6],
[ -7],
[ 0],
[ -1]])

5. 切分

与级联类似,三个函数完成切分工作:

  • np.split
  • np.vsplit
  • np.hsplit
nd = np.random.randint(0,100,size = (5,6))
nd
array([[44, 65, 84,  1, 83, 71],
[14, 71, 39, 21, 11, 27],
[27, 2, 89, 5, 13, 70],
[97, 63, 91, 45, 26, 71],
[86, 22, 3, 90, 56, 54]])
np.vsplit(nd,[1,4])
[array([[44, 65, 84,  1, 83, 71]]), array([[14, 71, 39, 21, 11, 27],
[27, 2, 89, 5, 13, 70],
[97, 63, 91, 45, 26, 71]]), array([[86, 22, 3, 90, 56, 54]])]
np.hsplit(nd,[1,3,8])
[array([[44],
[14],
[27],
[97],
[86]]), array([[65, 84],
[71, 39],
[ 2, 89],
[63, 91],
[22, 3]]), array([[ 1, 83, 71],
[21, 11, 27],
[ 5, 13, 70],
[45, 26, 71],
[90, 56, 54]]), array([], shape=(5, 0), dtype=int32)]
nd
array([[44, 65, 84,  1, 83, 71],
[14, 71, 39, 21, 11, 27],
[27, 2, 89, 5, 13, 70],
[97, 63, 91, 45, 26, 71],
[86, 22, 3, 90, 56, 54]])
np.split(nd,[2], axis = 1)
#axis = 0 默认的一种情况 行上面
[array([[44, 65],
[14, 71],
[27, 2],
[97, 63],
[86, 22]]), array([[84, 1, 83, 71],
[39, 21, 11, 27],
[89, 5, 13, 70],
[91, 45, 26, 71],
[ 3, 90, 56, 54]])]

6. 副本

所有赋值运算不会为ndarray的任何元素创建副本。对赋值后的对象的操作也对原来的对象生效。

nd = np.random.randint(0,10,size = 6)
nd
array([9, 8, 4, 4, 1, 7])
nd[5] = 1000
nd
array([   9,    8,    4,    4,    1, 1000])

可使用copy()函数创建副本

nd_copy = nd.copy()
nd_copy
array([   9,    8,    4,    4,    1, 1000])

四、ndarray的聚合操作

1. 求和np.sum

np.power([2,3,4],3)
array([ 8, 27, 64], dtype=int32)
nd = np.random.randint(0,10,size = (3,4))
nd
array([[1, 1, 6, 7],
[2, 7, 0, 1],
[6, 6, 8, 0]])
np.power(nd, 2)
array([[ 1,  1, 36, 49],
[ 4, 49, 0, 1],
[36, 36, 64, 0]], dtype=int32)
nd = np.random.randint(0,10,size =(2,3))
nd
array([[4, 8, 6],
[0, 7, 0]])
nd.sum()/6
4.166666666666667
nd.sum(axis = 1)
array([18,  7])
nd.sum(axis = 0)
array([ 4, 15,  6])
nd.mean()
#求平均值
4.166666666666667
nd.mean(axis = 0)
array([2. , 7.5, 3. ])
nd
array([[4, 8, 6],
[0, 7, 0]])
nd.argmin()
3
nd1 = np.random.randint(12,34,size = (4,5))
nd1
array([[27, 25, 30, 30, 20],
[15, 30, 15, 27, 28],
[31, 13, 27, 12, 26],
[29, 22, 23, 15, 20]])
nd1.argmin()
#非常有用!!!!
13
nd1.argmax()
10

2. 最大最小值:np.max/ np.min

同理

nd1.max()
31

3. 其他聚合操作

Function Name	NaN-safe Version	Description
np.sum np.nansum Compute sum of elements
np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute mean of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance
np.min np.nanmin Find minimum value
np.max np.nanmax Find maximum value
np.argmin np.nanargmin Find index of minimum value
np.argmax np.nanargmax Find index of maximum value
np.median np.nanmedian Compute median of elements
np.percentile np.nanpercentile Compute rank-based statistics of elements
np.any N/A Evaluate whether any elements are true
np.all N/A Evaluate whether all elements are true
np.power 幂运算

np.sum 和 np.nansum 的区别

nan not a number

操作文件

使用pandas打开文件president_heights.csv

获取文件中的数据


五、ndarray的矩阵操作

1. 基本矩阵操作


  1. 算术运算符:
  • 加减乘除
nd = np.random.randint(0,10,size = (5,5))
nd
array([[6, 9, 2, 8, 5],
[5, 8, 3, 3, 6],
[3, 6, 3, 0, 5],
[4, 0, 6, 7, 2],
[6, 6, 8, 8, 5]])
nd + 3
#广播机制在里面
array([[ 9, 12,  5, 11,  8],
[ 8, 11, 6, 6, 9],
[ 6, 9, 6, 3, 8],
[ 7, 3, 9, 10, 5],
[ 9, 9, 11, 11, 8]])
nd/2
array([[3. , 4.5, 1. , 4. , 2.5],
[2.5, 4. , 1.5, 1.5, 3. ],
[1.5, 3. , 1.5, 0. , 2.5],
[2. , 0. , 3. , 3.5, 1. ],
[3. , 3. , 4. , 4. , 2.5]])
#系统还给咱们提供了一些方法
np.multiply(nd, 2)
#乘法
array([[12, 18,  4, 16, 10],
[10, 16, 6, 6, 12],
[ 6, 12, 6, 0, 10],
[ 8, 0, 12, 14, 4],
[12, 12, 16, 16, 10]])
np.subtract(nd,100)
#减法
array([[ -94,  -91,  -98,  -92,  -95],
[ -95, -92, -97, -97, -94],
[ -97, -94, -97, -100, -95],
[ -96, -100, -94, -93, -98],
[ -94, -94, -92, -92, -95]])
  1. 矩阵积np.dot()

矩阵乘法

nd1 = np.random.randint(0,10,size = (2,3))
nd2 = np.random.randint(0,10,size = (3,4))
np.dot(nd1,nd2)
array([[65, 54, 63],
[76, 66, 66]])

2. 广播机制

【重要】ndarray广播机制的两条规则

  • 规则一:为缺失的维度补1
  • 规则二:假定缺失元素用已有值填充

例1:

m = np.ones((2, 3))

a = np.arange(3)

求M+a


例2:

a = np.arange(3).reshape((3, 1))

b = np.arange(3)

求a+b

习题

a = np.ones((4, 1))

b = np.arange(4)

求a+b

六、ndarray的排序

小测验:

使用以上所学numpy的知识,对一个ndarray对象进行选择排序。

def Sortn(x):

代码越短越好

#必须会默写至少两个排序
nd = np.random.randint(0,100,size = 10)
nd
array([40, 20, 21, 24, 88, 42, 30, 38, 35, 76])
def sort_nd(nd):
for i in range(nd.size):
for j in range(i, nd.size):
if nd[i] > nd[j]:
nd[i],nd[j] = nd[j],nd[i]
return nd
sort_nd(nd)
array([20, 21, 24, 30, 35, 38, 40, 42, 76, 88])
nd = np.random.randint(0,100,size = 10)
nd
array([12, 56, 48, 39, 64, 15, 58, 83, 10,  0])
def sort_nd2(nd):
for i in range(nd.size):
#argmin
#获取最小值的索引值
index_min = np.argmin(nd[i:]) + i
#当i = 0 index_min = 9
#当i = 1 index_min =
nd[i] ,nd[index_min]= nd[index_min],nd[i]
return nd
sort_nd2(nd)
array([ 0, 10, 12, 15, 39, 48, 56, 58, 64, 83])

1. 快速排序

np.sort()与ndarray.sort()都可以,但有区别:

  • np.sort()不改变输入
  • ndarray.sort()本地处理,不占用空间,但改变输入
nd = np.random.randint(0,100,size = 10)
nd
array([84, 73, 91, 38,  3, 56, 43, 70, 61, 72])
np.sort(nd)
array([ 3, 38, 43, 56, 61, 70, 72, 73, 84, 91])
nd
array([84, 73, 91, 38,  3, 56, 43, 70, 61, 72])
nd.sort()
nd
array([ 3, 38, 43, 56, 61, 70, 72, 73, 84, 91])

2. 部分排序

np.partition(a,k)

有的时候我们不是对全部数据感兴趣,我们可能只对最小或最大的一部分感兴趣。

  • 当k为正时,我们想要得到最小的k个数
  • 当k为负时,我们想要得到最大的k个数
nd = np.random.randint(0,1000,size = 500)
nd
array([679, 723, 152, 187, 847, 859, 843, 762, 239, 132, 183, 369, 168,
949, 533, 97, 480, 851, 309, 70, 140, 741, 383, 725, 478, 762,
553, 919, 935, 408, 295, 610, 601, 74, 986, 889, 600, 210, 945,
285, 209, 719, 111, 874, 347, 630, 978, 451, 500, 366, 773, 62,
506, 610, 619, 151, 667, 936, 234, 358, 846, 767, 865, 524, 126,
856, 832, 466, 428, 341, 474, 117, 891, 579, 287, 286, 947, 687,
368, 770, 838, 7, 246, 327, 513, 425, 794, 226, 144, 692, 423,
313, 457, 31, 900, 822, 781, 678, 548, 204, 687, 872, 134, 852,
264, 720, 894, 487, 780, 959, 633, 570, 54, 949, 336, 138, 319,
683, 115, 209, 56, 469, 326, 400, 362, 373, 726, 971, 948, 376,
575, 680, 122, 657, 961, 467, 586, 136, 763, 926, 533, 698, 960,
307, 609, 636, 649, 153, 308, 906, 520, 148, 465, 567, 231, 446,
456, 757, 388, 683, 946, 412, 671, 946, 959, 867, 673, 837, 518,
369, 494, 166, 808, 188, 253, 780, 511, 888, 332, 332, 8, 645,
779, 542, 998, 512, 287, 430, 835, 608, 759, 114, 740, 107, 552,
279, 885, 491, 346, 892, 739, 711, 908, 76, 233, 715, 915, 869,
673, 458, 21, 576, 297, 389, 35, 295, 25, 486, 664, 326, 260,
7, 87, 47, 242, 579, 889, 654, 465, 250, 364, 471, 758, 329,
579, 964, 774, 722, 710, 437, 763, 252, 551, 939, 765, 988, 186,
929, 767, 548, 583, 307, 775, 147, 936, 779, 959, 915, 673, 924,
456, 127, 472, 157, 287, 427, 449, 987, 174, 469, 148, 733, 846,
193, 725, 197, 988, 833, 498, 701, 696, 369, 915, 205, 81, 978,
218, 18, 984, 937, 169, 67, 617, 711, 177, 755, 691, 983, 360,
939, 313, 11, 54, 612, 626, 774, 442, 833, 547, 304, 967, 928,
85, 552, 231, 865, 227, 71, 997, 492, 484, 782, 498, 139, 361,
27, 925, 988, 842, 279, 185, 924, 932, 799, 972, 150, 107, 875,
949, 974, 445, 908, 733, 303, 909, 658, 941, 590, 14, 992, 800,
702, 409, 84, 62, 757, 865, 917, 711, 960, 448, 417, 961, 826,
215, 406, 208, 796, 12, 208, 86, 799, 533, 755, 806, 869, 245,
493, 128, 39, 572, 171, 951, 798, 101, 676, 715, 388, 707, 98,
35, 340, 397, 743, 166, 53, 568, 460, 545, 430, 349, 971, 370,
939, 138, 346, 96, 983, 393, 297, 615, 565, 805, 665, 435, 957,
991, 726, 489, 358, 86, 278, 124, 617, 643, 150, 583, 462, 658,
802, 848, 74, 807, 201, 354, 261, 408, 759, 361, 157, 829, 687,
963, 603, 617, 54, 306, 447, 952, 440, 972, 217, 808, 341, 586,
176, 852, 682, 770, 299, 108, 975, 440, 83, 807, 968, 131, 824,
428, 996, 556, 602, 159, 613, 711, 262, 342, 355, 191, 43, 666,
209, 766, 737, 829, 857, 263, 231, 992, 605, 479, 967, 168, 770,
885, 924, 986, 867, 130, 249])
np.partition(nd,20)
array([  7,   8,   7,  27,  11,  21,  18,  25,  12,  14,  31,  43,  47,
54, 54, 35, 54, 53, 39, 35, 56, 76, 67, 74, 62, 74,
71, 62, 70, 81, 86, 84, 86, 85, 83, 87, 108, 148, 131,
205, 153, 176, 111, 115, 101, 98, 159, 183, 132, 138, 136, 171,
168, 197, 193, 151, 157, 148, 107, 150, 127, 166, 168, 169, 126,
201, 191, 174, 177, 147, 140, 117, 130, 150, 128, 185, 124, 166,
122, 97, 187, 152, 134, 188, 107, 157, 114, 204, 144, 138, 139,
208, 96, 186, 208, 297, 287, 227, 231, 226, 253, 304, 246, 279,
264, 278, 279, 286, 287, 261, 297, 234, 306, 295, 303, 218, 260,
217, 242, 209, 209, 285, 231, 299, 249, 210, 295, 250, 262, 215,
252, 209, 287, 307, 245, 263, 239, 231, 233, 307, 533, 533, 467,
493, 406, 376, 417, 388, 308, 448, 520, 373, 465, 400, 326, 446,
456, 469, 388, 409, 319, 412, 336, 445, 340, 397, 487, 460, 518,
369, 494, 545, 430, 349, 370, 361, 511, 346, 332, 332, 393, 498,
484, 542, 492, 512, 457, 430, 313, 423, 435, 489, 425, 513, 327,
358, 547, 491, 346, 442, 368, 462, 313, 474, 341, 360, 428, 466,
524, 458, 354, 408, 358, 389, 361, 506, 447, 486, 366, 326, 500,
451, 440, 347, 341, 440, 428, 369, 465, 408, 364, 471, 498, 329,
342, 355, 478, 469, 383, 437, 449, 309, 427, 480, 533, 472, 369,
479, 456, 362, 548, 583, 775, 723, 936, 779, 959, 915, 673, 924,
767, 929, 988, 765, 939, 551, 763, 987, 710, 722, 774, 733, 846,
964, 725, 579, 988, 833, 758, 701, 696, 654, 915, 889, 579, 978,
664, 576, 984, 937, 673, 869, 617, 711, 915, 755, 691, 983, 715,
939, 908, 711, 739, 612, 626, 774, 892, 833, 885, 552, 967, 928,
740, 552, 759, 865, 608, 835, 997, 998, 779, 782, 645, 888, 780,
808, 925, 988, 842, 837, 673, 924, 932, 799, 972, 867, 959, 875,
949, 974, 946, 908, 733, 671, 909, 658, 941, 590, 946, 992, 800,
702, 683, 757, 567, 757, 865, 917, 711, 960, 906, 649, 961, 826,
636, 609, 960, 796, 698, 926, 763, 799, 586, 755, 806, 869, 961,
657, 680, 575, 572, 948, 951, 798, 971, 676, 715, 726, 707, 683,
949, 570, 633, 743, 959, 780, 568, 894, 720, 852, 872, 971, 687,
939, 548, 678, 781, 983, 822, 900, 615, 565, 805, 665, 692, 957,
991, 726, 794, 838, 770, 687, 947, 617, 643, 579, 583, 891, 658,
802, 848, 832, 807, 856, 865, 767, 846, 759, 936, 667, 829, 687,
963, 603, 617, 619, 610, 773, 952, 978, 972, 630, 808, 874, 586,
719, 852, 682, 770, 945, 600, 975, 889, 986, 807, 968, 601, 824,
610, 996, 556, 602, 935, 613, 711, 919, 553, 762, 725, 741, 666,
851, 766, 737, 829, 857, 949, 762, 992, 605, 843, 967, 859, 770,
885, 924, 986, 867, 847, 679])

numpy基础用法学习的更多相关文章

  1. [学习笔记] Numpy基础 系统学习

    [学习笔记] Numpy基础 上专业选修<数据分析程序设计>课程,老师串讲了Numpy基础,边听边用jupyter敲了下--理解+笔记. 老师讲的很全很系统,有些点没有记录,在PPT里就不 ...

  2. NumPy 基础用法

    NumPy 是高性能科学计算和数据分析的基础包. 它是 pandas 等其他各种工具的基础. 主要功能: ndarray 一个多维数组结构, 高效且节省空间 无需循环对整组数据进行快速运算的数学函数 ...

  3. NumPy基础入门学习

    对于习惯使用了MATLAB的用户而言,学习NumPy这个python工具包付出的成本应该是不大的. NumPy的基本的object是多维数组,是一个有同样类型的数字等构成的一张表格,能够通过元组进行索 ...

  4. 【Numpy】python机器学习包Numpy基础知识学习

    一.安装:在之前的博客中已经写过:http://www.cnblogs.com/puyangsky/p/4763234.html 二.python数组切片知识: python中序列类有list.str ...

  5. JDBC 基础用法学习

    JDBC概述 java 数据库链接,sun公司退出的 java 访问数据库的标准规范接口 是一种用于执行SQL语句的 java API 可以作为多种关系数据库提供统一接口 是一组 java 工具类和接 ...

  6. Python Numpy shape 基础用法(转自他人的博客,如涉及到侵权,请联系我)

    Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入 ...

  7. 【学习笔记】 第04章 NumPy基础:数组和矢量计算

    前言 正式开始学习Numpy,参考用书是<用Python进行数据清洗>,计划本周五之前把本书读完,关键代码全部实现一遍 NumPy基础:数组和矢量计算 按照书中所示,要搞明白具体的性能差距 ...

  8. MarkDown学习——基础用法

    目录 MarkDown开发版本MD2All基础用法 此处有代码<a id="top"></a>作为页内锚点 此处是用自动生成的目录 MarkDown是什么M ...

  9. python学习笔记(三):numpy基础

    Counter函数可以对列表中数据进行统计每一个有多少种 most_common(10)可以提取前十位 from collections import Counter a = ['q','q','w' ...

随机推荐

  1. java Exception 处理汇总

    1.java.lang.Exception: No runnable methods 测试类,没有可以运行的方法 解决: 方法添加注释:@Test

  2. v-else-if(v-show)

    <div id="app"> <div v-if="type === 'A'"> A </div> <div v-el ...

  3. 前端Javascript效果汇总

    1.DOM原生动态加载js <script type="text/javascript"> function loadJs(){ //得到html的头部dom var ...

  4. Python使用wxpy模块实现微信两两群组消息同步

    python使用wxpy模块提供的微信API接口实现两两群组的消息同步 安装模块: pip install wxpy 注意:需要同步的微信群需要保存到通讯录中 以下是自己闲来无事写的代码,暂时还存在以 ...

  5. yaml读取封装

    #!/usr/bin/env python # -*- coding: utf-8 -*- """ 对yaml格式的配置文件的操作 """ ...

  6. Linux下,如何监控某个进程到底向哪个地址发起了网络调用

    Linux下,如何监控某个进程到底向哪个地址发起了网络调用 有时候,有些应用,比如idea,你发起某个操作时,其底层会去请求网络,获取一些数据. 但是不知道,请求了什么地址.举个例子,在idea中,m ...

  7. Zookeeper——Watcher原理详解

    文章目录 引言 正文 一.如何注册监听 二.如何触发监听事件 三.事件类型有哪些 四.Watcher可以被无限次触发么?为什么要这么设计? 五.Watcher实现原理 1. 客服端发送请求 a. 初始 ...

  8. Day10-微信小程序实战-交友小程序-自定义callPhone 和copyText组件

    ---为了方便用户可以拨打电话和复制微信号(下面就要实现这样的两个功能) 注意:在小程序中是没办法直接的添加用户的微信的,所以就只能是复制微信号 (这种东西的话可以直接去做,也可以做成组件,做出组件的 ...

  9. 【Spring】AOP的代理默认是Jdk还是Cglib?

    菜瓜:你觉得AOP是啥 水稻:我觉得吧,AOP是对OOP的补充.通常情况下,OOP代码专注功能的实现,所谓面向切面编程,大多数时候是对某一类对象的方法或者功能进行增强或者抽象 菜瓜:我看你这个理解就挺 ...

  10. springboot自动装配原理

    最近开始学习spring源码,看各种文章的时候看到了springboot自动装配实现原理.用自己的话简单概括下. 首先打开一个基本的springboot项目,点进去@SpringBootApplica ...