网格弹簧质点系统模拟(Spring-Mass System by Fast Method)附源码
弹簧质点模型的求解方法包括显式欧拉积分和隐式欧拉积分等方法,其中显式欧拉积分求解快速,但积分步长小,两个可视帧之间需要多次积分,而隐式欧拉积分则需要求解线性方程组,但其稳定性好,能够取较大的积分步长。[Liu et al. 2007]文章提出了一种弹簧质点模型的求解方法,它将隐式欧拉积分方法转变为求解最优化问题,并采用迭代分步优化的方法来达到最优解。相比隐式欧拉积分,该方法计算快速,并且精度在可接受范围内。
弹簧质点模型的隐式表达方式如下:
(1)
(2)
其中:qn和vn分别代表tn时刻质点的位置和速度,f(qn)为tn时刻质点所受到的力,M为质点的质量,h为步长。
利用式(1)我们可以得到:
(3)
(4)
将式(3)减式(4)并与式(2)结合得到:
(5)
记x = qn+1,y = 2qn – qn-1,式(5)可以变化为:
(6)
式(6)的解其实对应于如下函数的临界点:
(7)
于是弹簧质点模型问题可以变化为最优化问题minx g(x),即最小化函数g(x)。
函数E(x)中最重要的部分是弹簧势能,根据Hooke定律,可以推导得到两个质点间弹簧的势能为:
(8)
其中:k为弹簧的弹性系数,r为弹簧的自然长度。
因此弹簧质点模型中弹簧的整体势能也可以变化为最优化问题,即最小化如下函数:
(9)
其中:L = A·K·AT,J = A·K,式中A∈Rm×s(m为质点数量,s为弹簧数量),并且Ai1,i=1,Ai2,i= -1,K∈Rm×m为对角矩阵,Ki,i = ki。
如果考虑其他外力(如重力等),那么函数E(x)的表达式为:
(10)
其中:
是所有弹簧为自然长度时的方向。
将函数E(x)的表达式(10)代入式(7),整理后得到最终的优化表达式:
(11)
对于上述优化问题,可以分两步进行,将前一时刻的质点位置作为初始值x,首先固定x优化d,然后固定d优化x,然后重复上述迭代步骤直到满足设定的迭代步数。


function [X, V] = spring_mass_fast(X0, V0, E, b, bc, R, h)
% This code implements algorithm of the following paper:
% "Fast Simulation of Mass-Spring Systems" m = size(X0,); % vertex number
s = size(E,); % spring number if ~exist('R', 'var')
R = normrow(X0(E(:,),:) - X0(E(:,),:));
end damping = 0.02;
drag = - damping;
stiffness = 1e1;
K = stiffness*ones(s,);
mass = 0.01;
M = diag(mass*ones(m,));
g = [ -9.8];
fext = repmat(mass*g, [m,]); A = sparse(E,[:s;:s]',repmat([1,-1],s,1),m,s); L = A*diag(K)*A';
J = A*diag(K); X = X0;
iter = ;
max_iter = ;
while true
% step1: Fix X and find D
D = X(E(:,),:) - X(E(:,),:);
D = bsxfun(@times, D, R./normrow(D)); % step2: Fix D and find X
X = solve_equation(M + h^*L, h^*(fext + J*D) + M*(X0 + V0*h), b, bc); iter = iter + ;
if iter == max_iter
break;
end
end
V = drag*(X - X0)/h;
end
本文为原创,转载请注明出处:http://www.cnblogs.com/shushen。
相关:
弹簧质点系统(Euler Integration):http://www.cnblogs.com/shushen/p/5473264.html
弹簧质点系统(Verlet Integration):http://www.cnblogs.com/shushen/p/5394431.html
参考文献:
[1] Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast simulation of mass-spring systems. ACM Trans. Graph. 32, 6, Article 214 (November 2013), 7 pages.
网格弹簧质点系统模拟(Spring-Mass System by Fast Method)附源码的更多相关文章
- 网格弹簧质点系统模拟(Spring-Mass System by Fast Method)附源码(转载)
转载: https://www.cnblogs.com/shushen/p/5311828.html 弹簧质点模型的求解方法包括显式欧拉积分和隐式欧拉积分等方法,其中显式欧拉积分求解快速,但积分步长 ...
- 网格弹簧质点系统模拟(Spring-Mass System by Verlet Integration)附源码
模拟物体变形最简单的方法就是采用弹簧质点系统(Spring-Mass System),由于模型简单并且实用,它已被广泛应用于服饰.毛发以及弹性固体的动态模拟.对于三角网格而言,弹簧质点系统将网格中的顶 ...
- 网格弹簧质点系统模拟(Spring-Mass System by Euler Integration)
弹簧质点模型是利用牛顿运动定律来模拟物体变形的方法.如下图所示,该模型是一个由m×n个虚拟质点组成的网格,质点之间用无质量的.自然长度不为零的弹簧连接.其连接关系有以下三种: 1.连接质点[i, j] ...
- Spring AOP实现方式三【附源码】
注解AOP实现 源码结构: 1.首先我们新建一个接口,love 谈恋爱接口. package com.spring.aop; /** * 谈恋爱接口 * * @author Administrator ...
- Spring AOP实现方式二【附源码】
自动代理模式[和我们说的方式一 配置 和 测试调用不一样哦~~~] 纯POJO切面 源码结构: 1.首先我们新建一个接口,love 谈恋爱接口. package com.spring.aop; /* ...
- Spring AOP实现方式一【附源码】
基本代理模式 纯POJO切面 源码结构: 1.首先我们新建一个接口,love 谈恋爱接口. package com.spring.aop; /** * 谈恋爱接口 * * @author Admin ...
- 快速开发架构Spring Boot 从入门到精通 附源码
导读 篇幅较长,干货十足,阅读需花费点时间.珍惜原创,转载请注明出处,谢谢! Spring Boot基础 Spring Boot简介 Spring Boot是由Pivotal团队提供的全新框架,其设计 ...
- Java Web开发框架Spring+Hibernate整合效果介绍(附源码)
最近花了一些时间整合了一个SpringMVC+springAOP+spring security+Hibernate的一套框架,之前只专注于.NET的软件架构设计,并没有接触过Java EE,好在有经 ...
- Java Web开发框架Spring+Hibernate整合效果介绍(附源码)(已过期,有更好的)
最近花了一些时间整合了一个SpringMVC+springAOP+spring security+Hibernate的一套框架,之前只专注于.NET的软件架构设计,并没有接触过Java EE,好在有经 ...
随机推荐
- Win10计算器在哪里?三种可以打开Win10计算器的方法图文介绍
全新的windows10系统带来了不少新的特性和改变,其中win10的计算器位置就发生了很多的变化,导致很多网友们都以为win10计算器不见了,那么,win10计算器在哪里?如何打开?针对此问题,本文 ...
- N皇后问题
题目描述 在n×n格的棋盘上放置彼此不受攻击的n个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于再n×n的棋盘上放置n个后,任何2个皇后不妨在同一行或同 ...
- CORS(跨源资源共享)实战
声明:本文中的cors为createCORSRequest返回的对象 1. 同一跨域接口 function createCORSRequest(method, url) { var xhr = new ...
- function的name属性
name属性是函数的一个非标准的属性. 通过这个属性,我们可以访问给定函数的名字.属性name的值永远等于跟在function关键字后的标识符. eg: function jenny(arg1,a ...
- 【Nginx 大系】Nginx服务器面面观
Nginx官方文档中文版 1. 先看看百度百科对Nginx 的解释: nginx_百度百科 2. 下面的博客就是讲 Nginx的安装方法和 具体的配置文件的使用介绍的很详细,可以仔细阅读下 [好]Ng ...
- TinyMCE 官方插件一览表(不完全)
TinyMCE 官方插件一览表:advlist(Advanced List Plugin):项目编号.toolbar:bullist.autolink:自动加链接.lists:This list pl ...
- jQuery插件之——简单日历
最近在研究js插件的开发,以前看大神们,对插件都是信手拈来,随便玩弄,感觉自己要是达到那种水平就好了,就开始自己研究插件开发了.研究了一段时间之后,就开始写了自己的第一个日历插件,由于是初学插件开发, ...
- 地理数据库 (Geodatabase) 版本管理
版本化地理数据库包含一些非版本化地理数据库中不存在的附加表格和记录.这些附加表和记录有助于长时间执行并行编辑.如果不进行版本化处理,则编辑者需要锁定数据并防止其他用户对数据进行编辑或查看.要使用此功能 ...
- 通过API执行AutoCAD命令来…
大家知道AutoCAD功能丰富,而更可贵的是,这么多丰富的功能背后都有一个命令,有些东西,直接用API调用写起来可能很费劲或者无法实现,可如果能用命令的话却很简单,这时候我们就可以通过API来调用Au ...
- Objective-C Runtime 运行时之四:Method Swizzling
理解Method Swizzling是学习runtime机制的一个很好的机会.在此不多做整理,仅翻译由Mattt Thompson发表于nshipster的Method Swizzling一文. Me ...