题目描述

为了提高服务器的耐受能力,很多流量大的网站都会架设多台服务器,而互联网的路由能找到线路最短的一台服务器。 现在UOI想要下片,他有好多台电脑,又有好多服务器可以提供下载。UOI将给你一个网络图,告诉你点点之间的线路长度,问最短的线路长是多少,以及选择的那台用来下载的电脑和被选的服务器的编号。 如果有多台电脑/服务器之间连线都是最短线路,输出电脑编号最小的;如果还有多种选择,输出服务器编号最小的。

输入格式

第一行n,m,表示总格有n个点,m条网络连线 接下来m行,表示每条网络连线所连接的A、B点和线的长度。 接下来一个数T1,表示UOI有多少台电脑。 下一行T1个数,表示UOI每台电脑的编号。 接下来一个数T2,表示有多少台服务器。 下一行T2个数,表示每台服务器编号。

输出格式

三个数,分别是线路长度,UOI下载用的电脑,提供片的下载源

-------------------------------------------------------------------------------------------------------------------------

题意转化:给你一些源点和一些汇点,求一条连接源点和汇点的路径并且使得这条路径的长度最小。

使用n次spfa显然会TLE。这时候我们要引入一个概念:超级源点。意思是引入一个0号点,能连接所有源点,并且不影响原图,即长度为0。这样跑1次spfa就够。此题还要求输出源点和汇点,我们开一个pre数组,记录每个点的前驱即可(前驱指的是从哪个源点可以到达那里)。

代码中稍稍做了一点修改,本身思路与其相符。

#include<bits/stdc++.h>
using namespace std;
queue<int> q;
struct node
{
int to,dis;
};
vector<node> v[];
int n,m,t1,t2,a[],vis[],pre[];
long long ans=,dis[];
int ans1,ans2;
int main()
{
memset(dis,0x3f,sizeof(dis));
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
int u,to,d;
scanf("%d%d%d",&u,&to,&d);
v[u].push_back((node){to,d});
v[to].push_back((node){u,d});
}
scanf("%d",&t1);
for (int i=;i<=t1;i++) scanf("%d",&a[i]);
sort(a+,a+t1+);
scanf("%d",&t2);
int t;
for (int i=;i<=t2;i++) scanf("%d",&t),pre[t]=t,vis[t]=,dis[t]=,q.push(t);
while(!q.empty())
{
int now=q.front();q.pop();vis[now]=;
for (int i=;i<v[now].size();i++)
{
int to=v[now][i].to;
if (dis[to]>dis[now]+v[now][i].dis)
{
pre[to]=pre[now];
dis[to]=dis[now]+v[now][i].dis;
if (!vis[to]) vis[to]=,q.push(to);
}
}
}
for (int i=;i<=t1;i++)
if (ans>dis[a[i]]) ans=dis[a[i]],ans1=a[i];
printf("%ld %d %d",ans,ans1,pre[ans1]);
return ;
}

【FZYZOJ】下片 题解(最短路+超级源点)的更多相关文章

  1. POJ 1062 昂贵的聘礼 最短路+超级源点

    Description 年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用10000个金币作为聘礼才答应把女儿嫁给他.探险家拿不出这么多金币,便请求酋长降低 ...

  2. HDU 2680 最短路 迪杰斯特拉算法 添加超级源点

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  3. hdoj 3572 Task Schedule【建立超级源点超级汇点】

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  4. [poj 1364]King[差分约束详解(续篇)][超级源点][SPFA][Bellman-Ford]

    题意 有n个数的序列, 下标为[1.. N ], 限制条件为: 下标从 si 到 si+ni 的项求和 < 或 > ki. 一共有m个限制条件. 问是否存在满足条件的序列. 思路 转化为差 ...

  5. 【HDOJ1531】【差分约束+添加超级源点】

    http://acm.hdu.edu.cn/showproblem.php?pid=1531 King Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  6. hdu-2680 Choose the best route---dijkstra+反向存图或者建立超级源点

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2680 题目大意: 给你一个有向图,一个起点集合,一个终点,求最短路 解题思路: 1.自己多加一个超级 ...

  7. BZOJ 1601: [Usaco2008 Oct]灌水 最小生成树_超级源点

    Description Farmer John已经决定把水灌到他的n(1<=n<=300)块农田,农田被数字1到n标记.把一块土地进行灌水有两种方法,从其他农田饮水,或者这块土地建造水库. ...

  8. poj 1364 King(线性差分约束+超级源点+spfa判负环)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14791   Accepted: 5226 Description ...

  9. spfa+差分约束系统(D - POJ - 1201 && E - POJ - 1364&&G - POJ - 1)+建边的注意事项+超级源点的建立

    题目链接:https://cn.vjudge.net/contest/276233#problem/D 具体大意: 给出n个闭合的整数区间[ai,bi]和n个整数c1,-,cn. 编写一个程序: 从标 ...

随机推荐

  1. Python 列表生成式 生成器

    [x for x in os.listdir("F:\XXX")] 生成器(x * x for x in range(10)) 如果列表元素按照某种算法推算出来,那我们就可以在循环 ...

  2. JavaScript学习 Ⅰ

    一. JavaScript的使用 <script>标签 在HTML中,JavaScript代码必须位于<script>与</script>标签之间. 实例: < ...

  3. SSTI(模板注入)

    SSTI 一. 什么是SSTI 模板引擎(这里特指用于Web开发的模板引擎)是为了使用户界面与业务数据(内容)分离而产生的,它可以生成特定格式的文档,用于网站的模板引擎就会生成一个标准的HTML文档. ...

  4. 数据可视化之powerBI基础(七)一文带你熟悉PowerBI建模视图中的功能

    https://zhuanlan.zhihu.com/p/67316729 PowerBI 3月的更新,正式发布了建模视图,而之前只是预览功能.新的建模视图到底有什么用,下面带你认识一下它的主要功能. ...

  5. 数据可视化之PowerQuery篇(十九)PowerBI数据分析实践第三弹 | 趋势分析法

    https://zhuanlan.zhihu.com/p/133484654 ​本文为星球嘉宾"海艳"的PowerBI数据分析工作实践系列分享之三,她深入浅出的介绍了PowerBI ...

  6. 一个简单的Maven小案例

    Maven是一个很好的软件项目管理工具,有了Maven我们不用再费劲的去官网上下载Jar包. Maven的官网地址:http://maven.apache.org/download.cgi 要建立一个 ...

  7. kubernetes系列(十) - 通过Ingress实现七层代理

    1. Ingress入门 1.1 Ingress简介 1.2 原理和组成部分 1.3 资料信息 2. Ingress部署的几种方式 2.1 前言 2.1 Deployment+LoadBalancer ...

  8. 【Nginx】面试官问我Nginx能不能配置WebSocket?我给他现场演示了一番!!

    写在前面 当今互联网领域,不管是APP还是H5,不管是微信端还是小程序,只要是一款像样点的产品,为了增加用户的交互感和用户粘度,多多少少都会涉及到聊天功能.而对于Web端与H5来说,实现聊天最简单的就 ...

  9. 关系型数据库查询语言 SQL 和图数据库查询语言 nGQL 对比

    摘要:这篇文章将介绍图数据库 Nebula Graph 的查询语言 nGQL 和 SQL 的区别. 本文首发于 Nebula Graph 官方博客:https://nebula-graph.com.c ...

  10. Git日常操作指南

    git status git add . git commit -m "注释" git stash # 每次 push 前 git pull --rebase // 如果有冲突,解 ...