用来干嘛的

​   要判断一个数 \(n\) 是否为素数,最朴素直接的办法是以\(O(\sqrt n)\) 时间复杂度地从2到 \(\sqrt n\) 循环即可得到最准确的结果。但是如果在 \(n\) 比较大的情况下,时间花销就太大了。这时,我们可以选择牺牲一点点准确度,使用可爱的米勒-拉宾(Miller-Rabin)素性检验算法来判断质数。根据百度百科,使用快速幂运算,这个算法的时间复杂度是 \(O(k\log^3 n)\)的,\(k\)是我们设定对一个数的进行测试的次数。\(k\) 越大,判断错误的几率越低,保守估计大概是\(4^{-k}\),实际效果极佳,我们一般取到10就可以了。

谁搞出来的(摘自百度百科)

​  米勒-拉宾素性检验是一种素数判定法则,利用随机化算法判断一个数是合数还是可能是素数。卡内基梅隆大学的计算机系教授Gary Lee Miller首先提出了基于广义黎曼猜想的确定性算法,由于广义黎曼猜想并没有被证明,其后由以色列耶路撒冷希伯来大学的Michael O. Rabin教授作出修改,提出了不依赖于该假设的随机化算法。

要用到的数学定理

费马小定理:

​  如果\(p\)是一个质数,而且整数\(a\)与\(p\)互质(即最小公因数\(gcd(a,p) = 1\)),则有\(a^{p-1}≡1(mod~p)\)(模\(p\)同余符号)。但是这个命题的逆命题不一定能判断一个数是否为素数,只能说明不满足\(a^{p-1}≡1(mod~p)\)条件的 \(p\) 一定是合数。在本算法里,主要就是运用了它的逆命题来检验素数的。

证明:不会,感兴趣的同学可以自己搜索相关证明(很多种),用完全剩余系的证明方法比较容易理解

二次探测定理:

​  若 \(n\) 为大于2的素数,则对于任意整数 \(a∈[1,n-1]\),使方程\(a^2=1(mod~n)\)成立的解有仅有\(a=1\)或者\(a=n-1\)。在算法中同样通过判断是否可以满足这个解情况,增强素数判断的准确性。

证明:还是不会,其实挺好证明的。这位博主的分析比较详细,可以看看

算法流程

​  首先对于一个数 \(num\),先判断是不是偶数和小于等于2这两种可以直接筛掉的情况。如果不是,那么就正式进入判断流程了。\(num\) 必为奇数,则\(num-1\)一定是个偶数,而偶数可以分解为\(2^s \cdot t = num-1\)的形式。这里如果我们让两边作为一个整数\(a\)的指数,不就可以利用费马小定理\(a^{num-1}≡1(mod~num)\)来检验 \(num\) 是否为素数了吗?别急,在算出 \(a^{2^s \cdot t}\) 的过程中,我们可以顺便利用二次探测定理来检测,大大提高我们判断的准确度。我们的做法是先随机产生一个比 \(num\) 小的整数 \(a\) ,先计算出\(a^t\) ,在我下面的代码中把这个值记作 \(x\)。然后循环 \(s\) 次,每次都用一个变量 \(test\) 记录 \(x^2\) 对 \(num\) 取模的值,如果 \(test = 1\)则说明\(x^2=1(mod~num)\)成立,进而可以判断 \(x\) 是否为1或者\(num-1\) ,如果\(x\) 都不是则说明 \(num\) 肯定不是素数啦。反复运用 \(s\) 次二次探测定理,最后再判断一次\(a^{2^s \cdot t}≡1(mod~num)\)是否成立,如果过了最后费马小定理这关,恭喜这个 \(num\) 经过了第一层考验。我们对 \(num\) 进行 \(k\) 次这样的考验,每次取一个不同的 \(a\) ,如果始终没有返回 ,则说明 \(num\) 最终通过了 \(Miller\) 测试。

c++代码

​  码风极丑警告,注释过多。需要用到快速幂和快速(也叫龟速)乘(不会的同学可以百度一下哦)。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll ;//miller-rabin素数检验一般应用于大数的快速检测,用long long //快速乘,代替乘法,防止a乘b爆long long
ll qMul(ll a,ll b,ll mod){
ll ans = 0;//a乘b等价转化为b个a相加,和快速幂原理一致
while(b){
if(b&1) ans = (ans+a)%mod;
a = (a+a)%mod;
b>>=1;
}
return ans;
} //快速幂模板
ll qPow(ll base,ll power,ll mod){
ll ans = 1;
while(power){
if(power&1) ans = qMul(ans,base,mod);
base = qMul(base,base,mod);
power>>=1;
}
return ans%mod;
} //miller-rabin素数检验函数
bool Miller_Rabin(ll num){
if(num == 2) return true; //2为质数
if(!(num&1)||num<2) return false;//筛掉偶数和小于2的数
ll s = 0,t = num-1; //流程中的s和t,2的s次方*t = num-1
while(!(t&1)){ //当t为偶数的时候,可以继续分解
s++;
t>>=1;
}
for (int i = 1; i <= 10; i++) { //进行十次测试即可得到比较准确的判断
ll a = rand()%(num-1)+1; //流程中的随机整数a,在1到num-1之间
ll x = qPow(a,t,num); //x为二次探测的解
for(int j = 1;j <= s;j++){ //x平方s次可以得到a的num-1次方
ll test = qMul(x,x,num); //test为x平方后对num取模
if(test == 1 && x != 1 && x != num-1) return false; //如果平方取模结果为1,但是作为解的x不是1或者num-1,说明num不是质数,返回
x = test;
}
if(x != 1) return false; //费马小定理作最后检测,a的num-1次方对num取模不等于1,一定不是质数
}
return true; //腥风血雨后仍坚持到最后,基本就是真正的质数了
} int main(){
ll num;
while(cin>>num){
if(Miller_Rabin(num)) cout<<num<<" is a prime."<<endl;
else cout<<num<<" is not a prime."<<endl;
}
return 0;
}

题目

牛客NC14703素数回文

​  我就是看了这道题才想去学Miller-Rabin素数检测的(实际上用朴素的方法也能过),用Miller-Rabin可以比朴素的算法快十倍(如果哪一天被卡了别打我)。感兴趣的可以去做一下,搞出回文数后套Miller-Rabin算法判断即可,注意要开long long。

博客园第一篇博文,谢谢观看ヾ(≧▽≦*)o,如果觉得有帮助请给我点个小心心 (*>.<*)

Miller-Rabin素数测试算法的更多相关文章

  1. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  2. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  4. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  5. Miller-Rabin素数测试算法(POJ1811Prime Test)

    题目链接:http://poj.org/problem?id=1811 题目解析:2<=n<2^54,如果n是素数直接输出,否则求N的最小质因数. 求大整数最小质因数的算法没看懂,不打算看 ...

  6. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  7. Miller-Rabin​素数测试算法

    \(Miller-Rabin\)​素数测试 用途 判断整数\(n\)是否是质数,在\(n\)较小的情况下,可以使用试除法,时间复杂度为\(O(\sqrt n)\).但当\(n\)的值较大的时候,朴素的 ...

  8. 素数测试算法(基于Miller-Rabin的MC算法) // Fermat素数测试法

    在以往判断一个数n是不是素数时,我们都是采用i从2到sqrt(n)能否整除n.如果能整除,则n是合数;否则是素数.但是该算法的时间复杂度为O(sqrt(n)),当n较大时,时间性能很差,特别是在网络安 ...

  9. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  10. Miller-Rabbin随机性素数测试算法

    //**************************************************************** // Miller_Rabin 算法进行素数测试 //速度快,而且 ...

随机推荐

  1. Zip破解工具Fcrackzip使用简介

    0x00 fcrackzip简单介绍 fcrackzip是一款专门破解zip类型压缩文件密码的工具,工具小巧方便.破解速度快,能使用字典和指定字符集破解,适用于linux.mac osx 系统 0x0 ...

  2. .net Framework4 类库调用Jwt

    通过jwt源码,将其引用的Newtonsoft.Json.dll的9.0版本改为最新的12.0版本后重新生成以下文件. 下载地址: https://files.cnblogs.com/files/Zh ...

  3. 深入理解JVM(③)学习Java的内存模型

    前言 Java内存模型(Java Memory Model)用来屏蔽各种硬件和操作系统的内存访问差异,这使得Java能够变得非常灵活而不用考虑各系统间的兼容性等问题.定义Java内存模型并非一件容易的 ...

  4. day29 继承

    目录 一.property装饰器 应用场景1 应用场景2 应用场景3(场景2优化) 二.继承介绍 1 语法 2 属性查找 3 继承的实现原理 3.1 菱形问题 3.2 继承原理 3.3 深度优先和广度 ...

  5. 数据可视化之分析篇(七)Power BI数据分析应用:水平分析法

    https://zhuanlan.zhihu.com/p/103264851 首先,以财务报表分析为例,介绍通用的分析方法论,整体架构如下图所示: (点击查看大图) 接下来我会围绕这五种不同的方法论, ...

  6. js自定义获取浏览器宽高

    /** * @description js自定义获取浏览器宽高 * * IE8 和 IE8 以下的浏览器不兼容 * window.innerWidth * window.innerHeight * * ...

  7. Burp Suite Sequencer Modules - 定序器模块

    Sequencer 主要用于处理和分析Tokens 目标网站:http://testaspnet.vulnweb.com/ (1)通过代理,拦截数据流. (2)Send to Sequencer,然后 ...

  8. 查看锁信息 v$lock 和 v$locked_object

    查看锁住的对象及会话id,serial# select a.*  from (SELECT o.object_name,               l.locked_mode,            ...

  9. WYT的刷子

    WYT的刷子 题目描述 WYT有一把巨大的刷子,刷子的宽度为M米,现在WYT要使用这把大刷子去粉刷有N列的栅栏(每列宽度都为1米:每列的高度单位也为米,由输入数据给出). 使用刷子的规则是: 与地面垂 ...

  10. django 学习记录(一)

    不使用 drf 来实现django 的 api 接口 json序列化 from django.shortcuts import render from django.views.generic.bas ...