联赛模拟测试17 A. 简单的区间 启发式合并
题目描述

分析
我们要找的是一段区间的和减去该区间的最大值能否被 \(k\) 整除
那么对于一段区间,我们可以先找出区间中的最大值
然后枚举最大值左边的后缀与最大值右边的前缀之和是否能被 \(k\) 整除
显然暴力枚举肯定会超时
所以我们可以用启发式合并的思想,只枚举长度较小的那一半,而在某种数据结构中查询另一半对应的值
查询的过程可以用主席树,但是常数巨大
其实我们可以对于每一个 \(\%k\) 后的前缀和开一个 \(vector\)
\(vector\) 中存放该值出现的位置
然后大力二分即可,复杂度和主席树相同
注意具体查的值要推一下式子
代码
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
#define rg register
inline int read(){
rg int x=0,fh=1;
rg char ch=getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') fh=-1;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*fh;
}
const int maxn=3e5+5,maxm=1e6+5;
int n,k,a[maxn],sum[maxn],wz[maxn][22],ans,cnt[maxm],lg[maxn],b[maxn];
std::vector<int> g[maxm];
int cx(int l,int r){
rg int k=lg[r-l+1];
if(b[wz[l][k]]<b[wz[r-(1<<k)+1][k]]) return wz[r-(1<<k)+1][k];
else return wz[l][k];
}
int js(int id,int l,int r){
if(l>r || g[id].size()==0 || g[id][g[id].size()-1]<l) return 0;
return std::upper_bound(g[id].begin(),g[id].end(),r)-std::lower_bound(g[id].begin(),g[id].end(),l);
}
void solve(int l,int mids,int r){
if(l>mids || r<mids) return;
solve(l,cx(l,mids-1),mids-1);
solve(mids+1,cx(mids+1,r),r);
if(mids-l<r-mids){
for(rg int i=l;i<=mids;i++){
rg int now=(sum[i-1]+a[mids])%k;
ans+=js(now,mids+1,r);
}
ans+=js(sum[mids-1],l-1,mids-2);
} else {
for(rg int i=mids;i<=r;i++){
rg int now=(sum[i]-a[mids]+k)%k;
ans+=js(now,l-1,mids-2);
}
ans+=js(sum[mids],mids+1,r);
}
}
int main(){
n=read(),k=read();
for(rg int i=1;i<=n;i++){
a[i]=read();
b[i]=a[i];
a[i]%=k;
wz[i][0]=i;
}
for(rg int i=1;i<=n;i++){
sum[i]=sum[i-1]+a[i];
if(sum[i]>=k) sum[i]-=k;
g[sum[i]].push_back(i);
}
for(rg int i=2;i<=n;i++){
lg[i]=lg[i/2]+1;
}
for(rg int j=1;j<=20;j++){
for(rg int i=1;i+(1<<j)-1<=n;i++){
if(b[wz[i][j-1]]>b[wz[i+(1<<(j-1))][j-1]]){
wz[i][j]=wz[i][j-1];
} else {
wz[i][j]=wz[i+(1<<(j-1))][j-1];
}
}
}
g[0].push_back(0);
for(rg int i=0;i<k;i++){
std::sort(g[i].begin(),g[i].end());
}
rg int be=cx(1,n);
solve(1,be,n);
printf("%d\n",ans);
return 0;
}
联赛模拟测试17 A. 简单的区间 启发式合并的更多相关文章
- [CSP-S模拟测试]:模板(ac)(线段树启发式合并)
题目描述 辣鸡$ljh\ NOI$之后就退役了,然后就滚去学文化课了.他每天都被$katarina$大神虐,仗着自己学过一些姿势就给$katarina$大神出了一道题.有一棵$n$个节点的以$1$号节 ...
- [CSP-S模拟测试]:english(可持久化Trie+启发式合并)
题目传送门(内部题24) 输入格式 第一行有$3$个整数$n,opt$,$opt$的意义将在输出格式中提到.第二行有$n$个整数,第$i$个整数表示$a_i$. 输出格式 若$opt=1$,输出一行一 ...
- 联赛模拟测试22 D. 简单计算
题目描述 分析 \(\sum_{i=0}^p[(p|qi)?0:1]=\sum_{i=0}^p[(p/gcd(p,q)|qi/gcd(p,q))?0:1]=\sum_{i=0}^p[(p/gcd(p, ...
- NOIP模拟测试17&18
NOIP模拟测试17&18 17-T1 给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是? 特判比值为1的情况,预处理比值2~1000的 ...
- 模拟测试—moq:简单一两句
在Xunit的基础上,说话模拟测试. 假如我们有这样一个控制器里面有这样一个方法,如图 我们在对Bar测试得时候,如果测试未通过,错误有可能来至于Bar,也有可能错误来至于serverde Foo方法 ...
- 联赛模拟测试10 C. 射手座之日
题目描述 分析 方法一(线段树) 线段树维护的是以当前节点为左端点的区间的贡献 而区间的右端点则会从 \(1\) 到 \(n\) 逐渐右移 当我们把右端点从 \(i-1\) 的位置扩展到 \(i\) ...
- [考试反思]0811NOIP模拟测试17:虚无
(sdfz未参加,也就是一共就51个人) 也不粘具体排名了,只写分数线. []220 []201 []194 [5]181 [10]141 [15]132 [20]122 [25]116 [30]10 ...
- NOIP模拟测试17
T1:入阵曲 题目大意:给定一个N*M的矩形,问一共有多少个子矩形,使得矩形内所有书的和为k的倍数. 60%:N,M<=80 枚举矩形的左上角和右下角,用二维前缀和求出数字之和. 时间复杂度$O ...
- NOIP模拟测试17「入阵曲·将军令·星空」
入阵曲 题解 应用了一种美妙移项思想, 我们先考虑在一维上的做法 维护前缀和$(sum[r]-sum[l-1])\%k==0$可以转化为 $sum[r]\% k==sum[l-1]\%k$开个桶维护一 ...
随机推荐
- .NET Core表达式树的梳理
最近要重写公司自己开发的ORM框架:其中有一部分就是查询的动态表达式:于是对这方面的东西做了一个简单的梳理 官网的解释: 表达式树以树形数据结构表示代码,其中每一个节点都是一种表达式,比如方法调用和 ...
- js垃圾回收和内存泄漏
js垃圾回收和内存泄漏 js垃圾回收 Js具有自动垃圾回收机制.垃圾收集器会按照固定的时间间隔周期性的执行. 1.标记清除(常用) 工作原理:是当变量进入环境时,将这个变量标记为"进入环境& ...
- [计算机网络]图解HTTP阅读笔记
总述 书的定位:一本十分浅显的HTTP书籍,主要介绍了HTTP与HTTPS.适合入门了解,很多地方都是蜻蜓点水,但稍微深入的地方能让人了解重点在哪,后面应该有针对性地阅读深入书籍. 主要内容:介绍了T ...
- JS 数组, 对象的增查改删(多语法对比)
数据结构横向对比, 增, 查, 改, 删 建议: 在用数据结构的时候, 优先考虑Map和Set(考虑数据的唯一性), 放弃传统的数组和Object, 特别是比较复杂的数据结构时 数组 Map与Arra ...
- 仿苏宁移动web页面 自适应 rem&less
index.html <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...
- spring framework源码之SpringFactoriesLoader
SpringFactoriesLoader 查询META-INF/spring.factories的properties配置中指定class对应的所有实现类. public abstract clas ...
- Laravel Model查询结果的3种存储格式内存占用对比
PHP Laravel框架支持Model查询数据后可以有多种方式返回数据,对新手会造成一些困扰,比如数组Model对象.集合.纯数组 今天从内存占用的角度对比一下3种数据返回方式 按数组Model对象 ...
- 一文带你熟悉JAVA IO这个看似很高冷的菇凉
Java IO 是一个庞大的知识体系,很多人学着学着就会学懵了,包括我在内也是如此,所以本文将会从 Java 的 BIO 开始,一步一步深入学习,引出 JDK1.4 之后出现的 NIO 技术,对比 N ...
- ERP与EHR系统的恩怨纠葛--开源软件诞生13
ERP中需要EHR的存在吗--第13篇 用日志记录"开源软件"的诞生 [点亮星标]----祈盼着一个鼓励 博主开源地址: 码云:https://gitee.com/redragon ...
- pytest封神之路第五步 参数化进阶
用过unittest的朋友,肯定知道可以借助DDT实现参数化.用过JMeter的朋友,肯定知道JMeter自带了4种参数化方式(见参考资料).pytest同样支持参数化,而且很简单很实用. 语法 在& ...