在前面的文章中,我们介绍了实现原理和基本环境安装。本文将重点介绍数据训练的流程,以及如何加载、切割、训练数据,并使用向量数据库Milvus进行数据存储。

1. 数据训练依赖于向量数据库

在本文中,我们使用了Milvus作为向量数据库。读者可以参考之前的文章《基于GPT搭建私有知识库聊天机器人(二)环境安装》来准备其他基础环境。

2. 数据训练流程

数据训练的流程包括准备PDF文档、上传至系统文件目录、开始训练、加载文件内容、内容切割和存储至向量数据库。下面是整个流程的流程图:

3. 代码展示

3.1 上传文件至系统文件目录

@app.route('/upload', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
# 获取文本内容
text = request.form.get('name')
# 获取文件内容
file = request.files.get('file')
if file:
# 保存文件到服务器
filename = file.filename
file.save(os.path.join(KNOWLEDGE_FOLDER, text, filename))
file_path = os.path.join(KNOWLEDGE_FOLDER, text, filename)
else:
file_path = None return jsonify({'message': '上传成功', 'fileServicePath': file_path}) return render_template('index.html')

3.2 加载文件内容

# 映射文件加载
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PDFMinerLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
} def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load() raise ValueError(f"文件不存在 '{ext}'") # 加载文件
def load_documents_knowledge(source_dir: str, secondary_directories: str) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend( glob.glob(os.path.join(source_dir, secondary_directories, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path] with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update() return results

3.3 内容切割

text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)

3.4 存储至向量数据库

Milvus.from_documents(
texts,
collection_name=collection_name,
embedding=embeddings,
connection_args={"host": MILVUS_HOST, "port": MILVUS_PORT}
)

3.5 全部代码

#!/usr/bin/env python3
import glob
import os
import shutil
from multiprocessing import Pool
from typing import List from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PDFMinerLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader, )
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Milvus
from tqdm import tqdm load_dotenv(".env") MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
KNOWLEDGE_FOLDER = os.environ.get('KNOWLEDGE_FOLDER')
KNOWLEDGE_FOLDER_BK = os.environ.get('KNOWLEDGE_FOLDER_BK')
chunk_size = 500
chunk_overlap = 50 # Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""在默认值不起作用时回退到文本纯""" def load(self) -> List[Document]:
"""EMl没有 html 使用text/plain"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"] = "text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e return doc # 映射文件加载
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PDFMinerLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
} def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load() raise ValueError(f"文件不存在 '{ext}'") def load_documents_knowledge(source_dir: str, secondary_directories: str) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend( glob.glob(os.path.join(source_dir, secondary_directories, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path] with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update() return results def process_documents_knowledge(secondary_directories: str) -> List[Document]:
"""
加载文档并拆分为块
"""
print(f"加载文件目录: {KNOWLEDGE_FOLDER}")
documents = load_documents_knowledge(KNOWLEDGE_FOLDER, secondary_directories)
if not documents:
print("没有文件需要加载")
exit(0)
print(f"加载 {len(documents)} 文件从 {KNOWLEDGE_FOLDER}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"切割 {len(texts)} 文本块 (最大. {chunk_size} tokens 令牌)")
return texts def main_knowledge(collection_name: str):
# Create embeddings
embeddings = OpenAIEmbeddings() texts = process_documents_knowledge(collection_name) Milvus.from_documents(
texts,
collection_name=collection_name,
embedding=embeddings,
connection_args={"host": MILVUS_HOST, "port": MILVUS_PORT}
)

4. 总结

在本文中,我们详细介绍了基于GPT搭建私有知识库聊天机器人的数据训练过程,包括数据训练的依赖、流程和代码展示。数据训练是搭建聊天机器人的重要步骤,希望本文能对读者有所帮助。在下一篇文章中,我们将介绍如何使用训练好的模型进行聊天机器人的测试和使用。

基于GPT搭建私有知识库聊天机器人(三)向量数据训练的更多相关文章

  1. 计算机网络课设之基于UDP协议的简易聊天机器人

    前言:2017年6月份计算机网络的课设任务,在同学的帮助和自学下基本搞懂了,基于UDP协议的基本聊天的实现方法.实现起来很简单,原理也很简单,主要是由于老师必须要求使用C语言来写,所以特别麻烦,而且C ...

  2. ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]

    ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...

  3. 版本控制系统之基于httpd搭建私有git仓库

    在上一篇博客中,我们主要聊到了git的基本工作原理和一些常用的git命令的使用:回顾请参考https://www.cnblogs.com/qiuhom-1874/p/13787701.html:今天我 ...

  4. 花了半个小时基于 ChatGPT 搭建了一个微信机器人

    相信大家最近被 ChatGPT 刷屏了,其实在差不多一个月前就火过一次,不会那会好像只在程序员的圈子里面火起来了,并没有被大众认知到,不知道最近是因为什么又火起来了,而且这次搞的人尽皆知. 想着这么火 ...

  5. 基于docer搭建私有gitlab服务器

    今天闲着无聊,于是乎想用最近很流行的docker容器搭建一个自己的gitlab的服务器,关于docker和gitlab就不多介绍了,网上查了很多资料,貌似没有一个统一的方法,很乱很杂,而且很容易误导人 ...

  6. 微信智能机器人助手,基于hook技术,自动聊天机器人

    下载地址: 链接:https://pan.baidu.com/s/1N5uQ3gaG2IZu7f6EGUmBxA 提取码:md7z 复制这段内容后打开百度网盘手机App,操作更方便哦 微信智能助手说明 ...

  7. 基于CentOS搭建私有云服务

    系统版本:CentOS 7.2 64 位操作系统 部署 XAMPP 服务 下载 XAMPP(XAMPP 是个集成了多个组件的开发环境,包括 Apache + MariaDB + PHP + Perl. ...

  8. 基于Docker搭建大数据集群(三)Hadoop部署

    主要内容 Hadoop安装 前提 zookeeper正常使用 JAVA_HOME环境变量 安装包 微云下载 | tar包目录下 Hadoop 2.7.7 角色划分 角色分配 NN DN SNN clu ...

  9. 智能聊天机器人——基于RASA搭建

    前言: 最近了解了一下Rasa,阅读了一下官方文档,初步搭建了一个聊天机器人. 官方文档:https://rasa.com/docs/ 搭建的chatbot项目地址: https://github.c ...

  10. 0基础搭建基于OpenAI的ChatGPT钉钉聊天机器人

    前言:以下文章来源于我去年写的个人公众号.最近chatgpt又开始流行,顺便把原文内容发到博客园上遛一遛. 注意事项和指引: 注册openai账号,需要有梯子进行访问,最好是欧美国家的IP,亚洲国家容 ...

随机推荐

  1. 【Zookeeper】(一)概述与内部原理

    Zookeeper概述 1 概述 Zookeeper是一个开源的.分布式的,为分布式应用提供协调服务的Apache项目. Zookeeper从设计模式的角度来看,是一个基于观察者模式设计的分布式服务管 ...

  2. H.323详解

    H.323详解 文章中的某些图粘不上去,可到资源页下载word版点击打开链接 转载博客:https://blog.csdn.net/hemingliang1987/article/details/16 ...

  3. pinia的使用

    1. pinia和vuex的区别 pinia没有mutations,只有:state. getters. actions pinia分模块不需要modules(之前vuex分模块需要modules) ...

  4. java优先队列PriorityQueue

    文章目录 前言 PriorityQueue 优先队列 java中优先队列的声明 按优先级排序 常见方法 private void grow(int minCapacity) public boolea ...

  5. Linux 内存管理 pt.2

    哈喽大家好我是咸鱼,在<Linux 内存管理 pt.1>中我们学习了什么是物理内存.虚拟内存,了解了内存映射.缺页异常等内容 那么今天我们来接着学习 Linux 内存管理中的多级页表和大页 ...

  6. 基于SqlSugar的开发框架循序渐进介绍(29)-- 快速构建系统参数管理界面-Vue3+ElementPlus

    在随笔<基于SqlSugar的开发框架循序渐进介绍(28)-- 快速构建系统参数管理界面>中介绍了基于SqlSugar开发框架,构建系统参数管理的后端API部分,以及WInform界面部分 ...

  7. 2021-04-05:给两个长度分别为M和N的整型数组nums1和nums2,其中每个值都不大于9,再给定一个正数K。 你可以在nums1和nums2中挑选数字,要求一共挑选K个,并且要从左到右挑。返回所有可能的结果中,代表最大数字的结果。

    2021-04-05:给两个长度分别为M和N的整型数组nums1和nums2,其中每个值都不大于9,再给定一个正数K. 你可以在nums1和nums2中挑选数字,要求一共挑选K个,并且要从左到右挑.返 ...

  8. 2021-06-25:只由小写字母(a~z)组成的一批字符串,都放在字符类型的数组String[] arr中,如果其中某两个字符串所含有的字符种类完全一样,就将两个字符串算作一类,比如:baacbba

    2021-06-25:只由小写字母(a~z)组成的一批字符串,都放在字符类型的数组String[] arr中,如果其中某两个字符串所含有的字符种类完全一样,就将两个字符串算作一类,比如:baacbba ...

  9. 记一次 .NET 某医院门诊软件 卡死分析

    一:背景 1. 讲故事 前几天有位朋友找到我,说他们的软件在客户那边卡死了,让我帮忙看下是怎么回事?我就让朋友在程序卡死的时候通过 任务管理器 抓一个 dump 下来,虽然默认抓的是 wow64 ,不 ...

  10. simplejwt配置大全

    # simplejwt配置大全SIMPLE_JWT = { 'ACCESS_TOKEN_LIFETIME': timedelta(minutes=5), # 设置token有效时间 'REFRESH_ ...