20. 从零用Rust编写正反向代理,四层反向代理stream(tcp与udp)实现
wmproxy
wmproxy是由Rust编写,已实现http/https代理,socks5代理, 反向代理,静态文件服务器,内网穿透,配置热更新等, 后续将实现websocket代理等,同时会将实现过程分享出来, 感兴趣的可以一起造个轮子法
项目地址
gite: https://gitee.com/tickbh/wmproxy
github: https://github.com/tickbh/wmproxy
四层代理
四层代理,也称为网络层代理,是基于IP地址和端口号的代理方式。它只关心数据包的源IP地址、目的IP地址、源端口号和目的端口号,不关心数据包的具体内容。四层代理主要通过报文中的目标地址和端口,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。
因为四层代理不用处理任何相关的包信息,只需将包数据传递给正确的服务器即可,所以实现相对比较简单。
以下是OSI七层模型的示意图,来源于网上

实现方式
双端建立连接,也就是收到客户端的连接的时候,同时建立一条通往服务端的连接,然后做双向绑定即可完成服务。
四层代理还有udp的转发需求,需要同步将udp的数据进行转发,udp的处理方式处理会相对复杂一些,因为当前地址只有绑定一份,但是可能来自各种不同的地址,不同的客户端的(remote_ip, remote_port)我们需要当成一个全新的客户端。
而且有时候无法主动感知是否已经被断开了,所以也必须有超时机制,好在超时的时候能及时释放掉连接,好让系统及时的socket资源。
TCP实现
tcp找到相应的地址,连接,并双向绑定即可
pub async fn process<T>(
data: Arc<Mutex<StreamConfig>>,
local_addr: SocketAddr,
mut inbound: T,
_addr: SocketAddr,
) -> ProxyResult<()>
where
T: AsyncRead + AsyncWrite + Unpin + std::marker::Send + 'static,
{
let value = data.lock().await;
for (_, s) in value.server.iter().enumerate() {
if s.bind_addr.port() == local_addr.port() {
let addr = ReverseHelper::get_upstream_addr(&s.upstream, "")?;
let mut connect = HealthCheck::connect(&addr).await?;
copy_bidirectional(&mut inbound, &mut connect).await?;
break;
}
}
Ok(())
}
UDP实现
UDP相对比较复杂,下面我们先列举内部的流程图
A[绑定反向udp端口]
B[客户端]
H{是否第一次}
I[创建异步协程]
D[异步协程中]
B <-->|根据地址连接发送数据到| A
A --> H
H -->|是|I
I -->|将Receiver传到以接收数据| D
H -->|否,将数据Sender给|D
D -->|异步读取数据并发送|A
在stream绑定的时候,要区分出TCP还是UDP的,做分别的绑定
/// stream的绑定,按bind_mode区分出udp或者是tcp,返回相应的列表
pub async fn bind(&mut self) -> ProxyResult<(Vec<TcpListener>, Vec<StreamUdp>)> {
let mut listeners = vec![];
let mut udp_listeners = vec![];
let mut bind_port = HashSet::new();
for value in &self.server.clone() {
if bind_port.contains(&value.bind_addr.port()) {
continue;
}
bind_port.insert(value.bind_addr.port());
if value.bind_mode == "udp" {
let listener = Helper::bind_upd(value.bind_addr).await?;
udp_listeners.push(StreamUdp::new(listener, value.clone()));
} else {
let listener = Helper::bind(value.bind_addr).await?;
listeners.push(listener);
}
}
Ok((listeners, udp_listeners))
}
我们会对连接做分别的监听,下面是udp的获取是否有新数据:
async fn multi_udp_listen_work(
listens: &mut Vec<StreamUdp>,
) -> (io::Result<(Vec<u8>, SocketAddr)>, usize) {
if !listens.is_empty() {
let (data, index, _) =
select_all(listens.iter_mut().map(|listener| {
listener.next().boxed()
})).await;
if data.is_none() {
return (Err(io::Error::new(io::ErrorKind::InvalidInput, "read none data")), index)
}
(data.unwrap(), index)
} else {
let pend = std::future::pending();
let () = pend.await;
unreachable!()
}
}
此处我们用next,也就是我们实现了 futures_core::Stream接口,用Poll的方式来注册实现有事件的时候来通知。
在tokio中,在read或者write的时候返回
Poll::Pending,将会将socket的可读可写注册到底层,如果一旦系统可读可写就会通知该接口,将会重新执行一遍futures_core::Stream
我们将同时可以处理可读可写可发送事件,如果接口超时我们将关闭相应的接口。
impl Stream for StreamUdp {
type Item = io::Result<(Vec<u8>, SocketAddr)>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
let _ = self.poll_write(cx)?;
let _ = self.poll_sender(cx)?;
self.poll_read(cx)
}
}
下面是主要的StreamUdp类
/// Udp转发的处理结构,缓存一些数值以做中转
pub struct StreamUdp {
/// 读的缓冲类,避免每次都释放
pub buf: BinaryMut,
/// 核心的udp绑定端口
pub socket: UdpSocket,
pub server: ServerConfig,
/// 如果接收该数据大小为0,那么则代表通知数据关闭
pub receiver: Receiver<(Vec<u8>, SocketAddr)>,
/// 将发送器传达给每个子协程
pub sender: Sender<(Vec<u8>, SocketAddr)>,
/// 接收的缓存数据,无法保证全部直接进行发送完毕
pub cache_data: LinkedList<(Vec<u8>, SocketAddr)>,
/// 发送的缓存数据,无法保证全部直接进行发送完毕
pub send_cache_data: LinkedList<(Vec<u8>, SocketAddr)>,
/// 每个地址绑定的对象,包含Sender,最后操作时间,超时时间
remote_sockets: HashMap<SocketAddr, InnerUdp>,
}
结果测试
我们自己开一个udp服务端,绑定了本地的8089,我们将接收到的数据前面加上from server:并进行返回,代理端我们绑定了84的端口,并将udp数据转发给8089端:
use tokio::net::UdpSocket;
use std::io;
#[tokio::main]
async fn main() -> io::Result<()> {
let sock = UdpSocket::bind("0.0.0.0:8089").await?;
let mut buf = [0; 1024];
loop {
let (len, addr) = sock.recv_from(&mut buf).await?;
let mut vec = "from server: ".as_bytes().to_vec();
vec.extend(&buf[..len]);
let _ = sock.send_to(&vec, addr).await?;
}
}
客户端我们用nc运行:

可以看出两个客户端互相独立,彼此返回的数据均符合预期,正常的接收及返回。
TCP我们绑定了83端口并转发到HTTP的本地端口8080,我们用curl进行测试,符合预期,如图:

结语
至此四层的反向代理TCP/UDP均已完成,也符合预期。
点击 [关注],[在看],[点赞] 是对作者最大的支持
20. 从零用Rust编写正反向代理,四层反向代理stream(tcp与udp)实现的更多相关文章
- Centos8 Docker+Nginx部署Asp.Net Core Nginx正向代理与反向代理 负载均衡实现无状态更新
首先了解Nginx 相关介绍(正向代理和反向代理区别) 所谓代理就是一个代表.一个渠道: 此时就涉及到两个角色,一个是被代理角色,一个是目标角色,被代理角色通过这个代理访问目标角色完成一些任务的过程称 ...
- nginx正向代理,反向代理,透明代理(总结)
1正向代理 正向代理,也就是传说中的代理,他的工作原理就像一个跳板, 简单的说, 我是一个用户,我访问不了某网站,但是我能访问一个代理服务器 这个代理服务器呢,他能访问那个我不能访问的网站 于是我先连 ...
- Nginx的正向代理与反向代理详解
正向代理和反向代理的概念 代理服务(Proxy),通常也称为正向代理服务. 如果把局域网外Internet想象成一个巨大的资源库,那么资源就分布到了Internet的各个点上,局域网内的客户端要访问这 ...
- Nginx详解(正向代理、反向代理、负载均衡原理)
Nginx配置详解 nginx概述 nginx是一款自由的.开源的.高性能的HTTP服务器和反向代理服务器:同时也是一个IMAP.POP3.SMTP代理服务器:nginx可以作为一个HTTP服务器进行 ...
- Nginx+Php-fpm运行原理 代理与反向代理
一.代理与反向代理 现实生活中的例子 1.正向代理:访问google.com 如上图,因为google被墙,我们需要vpnFQ才能访问google.com.Virtual Private Networ ...
- (大型网站之Nginx)图解正向代理、反向代理、透明代理
一.正向代理(Forward Proxy) 一般情况下,如果没有特别说明,代理技术默认说的是正向代理技术.关于正向代理的概念如下: 正向代理(forward)是一个位于客户端[用户A]和原始服务器(o ...
- Kubernets二进制安装(8)之部署四层反向代理
四层反向代理集群规划 主机名 角色 IP地址 mfyxw10.mfyxw.com 4层负载均衡(主) 192.168.80.10 mfyxw20.mfyxw.com 4层负载均衡(从) 192.168 ...
- 正向代理 、反向代理, 和 Linux系统配置nginx。
一.正向代理和反向代理的简单介绍. 2.代理 中间商,赚差价 在没有代理的时候: 茅台酒厂--->生产了一批酒--->通过物流发送到客户的家中/客户直接到酒厂购买酒--->突然有一个 ...
- 正向代理与反向代理的区别【Nginx读书笔记】
正向代理的概念 正向代理,也就是传说中的代理,他的工作原理就像一个跳板, 简单的说, 我是一个用户,我访问不了某网站,但是我能访问一个代理服务器 这个代理服务器呢,他能访问那个我不能访问的网站 于是我 ...
- 正向代理与反向代理的区别【Nginx读书笔记】(zz)
正向代理与反向代理的区别[Nginx读书笔记] 正向代理的概念 正向代理,也就是传说中的代理,他的工作原理就像一个跳板,简单的说,我是一个用户,我访问不了某网站,但是我能访问一个代理服务器 ...
随机推荐
- ENVI大气校正方法反演Landsat 7地表温度
本文介绍基于ENVI软件,实现对Landsat 7遥感影像加以大气校正方法的地表温度反演操作. 目录 1 图像前期处理与本文理论部分 2 实际操作 2.1 植被覆盖度计算 2.2 地表比辐射率计算 2 ...
- 统一观测丨使用 Prometheus 监控 Cassandra 数据库最佳实践
作者:元格 本篇内容主要包括四部分:Cassandra 概览介绍.常见关键指标解读.常见告警规则解读.如何通过 Prometheus 建立相应监控体系. Cassandra 简介 Cassandra ...
- 你的Spring应用启动很慢?不妨试试这个工具!
睡不着闲逛,在GitHub上看到一个挺实用的开源项目:Spring Startup Analyzer. 从项目名称中就大概能猜到,这是一个分析Spring应用启动过程的工具.Spring Startu ...
- Go 语言入门指南: 环境搭建、基础语法和常用特性解析 | 青训营
Go 语言入门指南: 环境搭建.基础语法和常用特性解析 | 青训营 从零开始 Go 语言简介 Go 是一个开源的编程语言,它能让构造简单.可靠且高效的软件变得容易. Go是从2007年末由Robert ...
- ACl与ACL实验
ACl与ACL实验 ACL 1,ACL概述及 产生的背景 ACL: access list 访问控制列表 2,ACL应用 ACL两种应用: 应用在接口的ACL-----过滤数据包(原目ip地址,原目 ...
- [python]爬取手机号码前缀和地区信息
概述 使用python爬取手机号码前缀7位.区号和地区. 小网站不容易,对爬虫也挺友好,就不放链接了. 代码 import requests from lxml import etree from f ...
- 使用 SQL 的方式查询消息队列数据以及踩坑指南
背景 为了让业务团队可以更好的跟踪自己消息的生产和消费状态,需要一个类似于表格视图的消息列表,用户可以直观的看到发送的消息:同时点击详情后也能查到消息的整个轨迹. 消息列表 点击详情后查看轨迹 原理介 ...
- 非全自研可视化表达引擎-RuleLinK
说在前面 工作中经常会遇到这样的场景: 帮忙把小贝拉门店 商品金额在5w以内,产康订单最多95折. 帮忙把圣贝拉门店 开业时间在6个月内,折扣低于7折要发起审批 帮忙把宁波太平洋店设置独立合同模板 帮 ...
- 简单描述下HTTP协议和TCP协议之间的关系以及TCP三次握手, 四次挥手
TCP 三次握手, 四次挥手 TCP(传输控制协议)是一种用于在计算机网络中建立可靠连接的协议.TCP连接的建立和终止分别使用了"三次握手"和"四次挥手"的过程 ...
- 这才叫 API 接口设计!
API 接口设计 Token 设计 Token 是服务端生成的一串字符串,以作客户端进行请求的一个令牌,当第一次登录后,服务器生成一个 Token 便将此 Token 返回给客户端,以后客户端只需带上 ...