题目

给定一个长度为 \(n\) 的正整数序列 \(a\),问有多少对 \((i,j),i<j\) 使得存在一个整数 \(x\) 满足 \(a_i\times a_j=x^k\)


分析

将 \(a_i\) 分解质因数可以发现,其实是要满足对于每个质因数的指数之和 \(c_i+c_j\) 是 \(k\) 的倍数

那么先将 \(10^5\) 以内的质数找出来,然后对于每个数求出指数模 \(k\) 的余数, 将其用字符串哈希压缩,然后求互补的对数就可以了


代码

#include <cstdio>
#include <cctype>
#include <map>
using namespace std;
typedef unsigned long long ull;
const int N=100011; map<ull,int>uk;
int v[N],prime[N],a[N],n,mx,Cnt,k; ull p[N],ans;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void Pro(int n){
v[1]=-1;
for (int i=2;i<=n;++i){
if (!v[i]) prime[++Cnt]=i,v[i]=Cnt;
for (int j=1;prime[j]<=n/i&&j<=Cnt;++j){
v[i*prime[j]]=j;
if (i%prime[j]==0) break;
}
}
}
int max(int a,int b){return a>b?a:b;}
int main(){
n=iut(),k=iut(),p[0]=1;
for (int i=1;i<=n;++i){
a[i]=iut();
mx=max(mx,a[i]);
}
Pro(mx);
for (int i=1;i<=Cnt;++i) p[i]=p[i-1]*5623;
for (int i=1;i<=n;++i){
ull t0=0,t1=0;
for (int j=1;j<=Cnt&&prime[j]<=a[i]/prime[j];++j)
if (a[i]%prime[j]==0){
int t=0;
while (a[i]%prime[j]==0)
a[i]/=prime[j],++t;
if ((t%=k)==0) continue;
t0+=p[j]*t,t1+=p[j]*(k-t);
}
if (a[i]>1) t0+=p[v[a[i]]],t1+=p[v[a[i]]]*(k-1);
ans+=uk[t1],++uk[t0];
}
return !printf("%llu",ans);
}

#线性筛,哈希#CF1225D Power Products的更多相关文章

  1. 【知识总结】线性筛_杜教筛_Min25筛

    首先感谢又强又嘴又可爱脸还筋道的国家集训队(Upd: WC2019 进候选队,CTS2019 不幸 rk6 退队)神仙瓜 ( jumpmelon ) 给我讲解这三种筛法~~ 由于博主的鸽子属性,这篇博 ...

  2. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  3. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  4. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  5. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  6. 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 726  Solved: 309[Submit][Status ...

  7. 洛谷P3383 【模板】线性筛素数

    P3383 [模板]线性筛素数 256通过 579提交 题目提供者HansBug 标签 难度普及- 提交  讨论  题解 最新讨论 Too many or Too few lines 样例解释有问题 ...

  8. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  9. BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...

  10. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

随机推荐

  1. 案例分享:Qt高频fpga采集数据压力位移速度加速度分析系统(通道配置、电压转换、采样频率、通道补偿、定时采集、距离采集,导出exce、自动XY轴、隐藏XY轴、隐藏显示通道,文件回放等等)

    需求   1.0-7通道压力采集,采集频率1~100Khz(1,10,20,30-1000Khz):  2.0-7通道压力,可设置补偿值,测量范围:  3.编码器0,1脉冲采集,计算位移,速度,加速度 ...

  2. Celey异步发送邮件时报django.core.exceptions.ImproperlyConfigured的解决办法

    原main.py入口文件 #Celery的入口 from celery import Celery #创建Celery实例 生产者 celery_app = Celery('meiduo') #加载配 ...

  3. 数据分析day02

    案例 需求:双均线策略制定 1.使用tushare包获取某股票的历史行情数据 2.计算该股票历史数据的5日均线和30日均线 - 什么是均线? - 对于每一个交易日,都可以计算出前N天的移动平均值,然后 ...

  4. Retrofit 的基本用法

    一.添加依赖和网络权限 添加依赖 implementation 'com.squareup.retrofit2:retrofit:2.9.0' implementation 'com.squareup ...

  5. 【复盘#01】myh笔试

    存疑 1.http响应体中版本和缓存是哪个字段(Etga) http和https的区别 2.mysql同一个表中有多个相同字段但搜索的时候只搜得出某一个,要怎么修改(inner ..) mysql如何 ...

  6. 【Azure 环境】Windows中安装Python azure-eventhub-checkpointstoreblob-aio模块时出错 ERROR: Could not install packages due to an EnvironmentError: [Errno 2] No such file or directory:

    问题描述 在使用Python代码接受EventHub的消息时,根据文档要求安装azure-eventhub-checkpointstoreblob-aio模块时,出现了如下错误: ERROR: Cou ...

  7. Calculate Similarity调研

    Calculate Similarity - the most relevant Metrics in a Nutshell --调研学习相似度定义与计算 Zhang Zhibin 张芷彬 Many ...

  8. Nebula Importer 数据导入实践

    本文首发于 Nebula Graph Community 公众号 前言 Nebula 目前作为较为成熟的产品,已经有着很丰富的生态.数据导入的维度而言就已经提供了多种选择.有大而全的Nebula Ex ...

  9. 如何在 C# 中以编程的方式将 CSV 转为 Excel XLSX 文件

    前言 Microsoft Excel的XLSX格式以及基于文本的CSV(逗号分隔值)格式,是数据交换中常见的文件格式.应用程序通过实现对这些格式的读写支持,可以显著提升性能.在本文中,小编将为大家介绍 ...

  10. VC-MFC 登陆界面 + 数据库账号+密码

    1 // DlgUser.cpp : 实现文件 2 // 3 4 #include "stdafx.h" 5 #include "Login.h" 6 #inc ...