#01背包,容斥,排列组合#洛谷 5615 [MtOI2019]时间跳跃
分析
不是凸多边形当且仅当边数小于2或者最长边大于等于其余边之和,
那么容斥一下,首先总权值为
\]
然后设 \(f[n]\) 表示等于 \(n\) 的方案数,\(dp[n]\) 表示等于 \(n\) 的权值和,
那么 \(dp[n]=dp[n-x]+f[n-x]\) 就可以实现转移,每次枚举新的最长边时统计一下方案数即可
代码
#include <cstdio>
#include <cctype>
using namespace std;
const int N=5011,mod=1000000007;
const int i2=(mod+1)>>1;
int f[N],dp[N],two[N],ans[N],iwo[N];
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
void Pro(int n){
f[0]=two[0]=iwo[0]=1;
for (int i=1;i<=n;++i) ans[i]=1;
for (int i=1;i<=n;++i) iwo[i]=1ll*i2*iwo[i-1]%mod;
for (int i=1;i<=n;++i){
for (int j=1;j<=i;++j) Mo(ans[i],(dp[j]+f[j])%mod);
for (int j=n;j>=i;--j) Mo(dp[j],(dp[j-i]+f[j-i])%mod);
for (int j=n;j>=i;--j) Mo(f[j],f[j-i]);
}
for (int i=1;i<=n;++i) two[i]=2ll*two[i-1]%mod;
for (int i=1;i<=n;++i) Mo(ans[i],ans[i-1]);
for (int i=1;i<=n;++i) ans[i]=(1ll*i*two[i-1]%mod-ans[i]+mod)*iwo[i]%mod;
}
int main(){
Pro(N-11);
for (int T=iut();T;--T)
print(ans[iut()]),putchar(10);
return 0;
}
#01背包,容斥,排列组合#洛谷 5615 [MtOI2019]时间跳跃的更多相关文章
- 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)
题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...
- hdu6143 Killer Names 容斥+排列组合
/** 题目:hdu6143 Killer Names 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6143 题意:有m种字符(可以不用完),组成两个长度 ...
- 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)
洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...
- (01背包 dp)P1049 装箱问题 洛谷
题目描述 有一个箱子容量为VV(正整数,0≤V≤20000),同时有nn个物品(0<n≤30,每个物品有一个体积(正整数). 要求nn个物品中,任取若干个装入箱内,使箱子的剩余空间为最小. 输入 ...
- 洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...
- 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...
- Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理
Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理 [Problem Description] 略 [Solution] 上述题目等价于:有\(4\)种物品,每种物品有\(d_i ...
- BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...
- P1450 [HAOI2008]硬币购物(完全背包+容斥)
P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...
- 如何求先序排列和后序排列——hihocoder1049+洛谷1030+HDU1710+POJ2255+UVA548【二叉树递归搜索】
[已知先序.中序求后序排列]--字符串类型 #1049 : 后序遍历 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho在这一周遇到的问题便是:给出一棵二叉树的前序和 ...
随机推荐
- docker中container相关命令
1.以tomcat镜像为例运行tomcat容器(运行tomcat实例) docker run tomcat 2.宿主机端口与容器端口进行映射 -p docker run -p 8080(系统上外部端口 ...
- SUB-LVDS 与LVDS 互联
SUB-LVDS 与 LVDS介绍 电气规范 今天有同学问SUB-LVDS输出是否能接到LVDS输入上,以前没用过SUB-LVDS,一起学习一下. Sub-LVDS is a differential ...
- VIM初使化
vim ~/.vimrc #设置编码 set encoding=utf-8 fileencodings=ucs-bom,utf-8,cp936 #显示行号 set number #一个tab为4个空格 ...
- curl比较有用的参数
精选参数: --include // -i curl的输出中包含http头信息--verbose // 比-i更加丰富,>表示请求的信息, <表示curl接收的信息 *表示curl额外提 ...
- C#与C互操作
C#给C++传递char**(转载) extern "C" _declspec(dllexport)void GetResult(char* a,char** pBuf) { sp ...
- Java this关键字使用 详解+ 证明
1 package com.bytezero.thistest; 2 /** 3 * 4 * @Description 5 * @author Bytezero·zhenglei! Email:420 ...
- MyBatis的Example类详解
Example类的定义? 第一次幕课网教程看到关于这方面教时,没有懂example起什么用,感觉不用example也可以查询了,后来认真一看才知道这是查询条件生成器 mybatis-generator ...
- open cv java 可以 对图片进行分析,得到数据。考试答题卡 2B铅笔涂黑嘎达 识别
open cv java 可以 对图片进行分析,得到数据.考试答题卡 2B铅笔涂黑嘎达 识别
- 基于Python的 如何检查字符串输入是否为数字
一 概念 这种有很多常用的方法,这里只介绍一种常用的方法是使用正则表达式来匹配数字的模式.通过定义一个匹配数字的正则表达式,然后使用re模块中的search()方法来进行匹配. 二 例子: 下面是一个 ...
- 2层for循环生成 TreeView
C# TreeView 利用2层for循环生成,代码如下: //生成树 treeView1.Nodes.Clear(); //封装了数据库查询方法 MyDS_Grid = MyDataClass.ge ...