Kotlin 协程四 —— Flow 和 Channel 的应用
一、 Flow 与 Channel 的相互转换
1.1 Flow 转换为 Channel
1.1.1 ChannelFlow
@InternalCoroutinesApi
public abstract class ChannelFlow<T>(
// upstream context
@JvmField public val context: CoroutineContext,
// buffer capacity between upstream and downstream context
@JvmField public val capacity: Int,
// buffer overflow strategy
@JvmField public val onBufferOverflow: BufferOverflow
) : FusibleFlow<T> {
...
public open fun produceImpl(scope: CoroutineScope): ReceiveChannel<T> =
scope.produce(context, produceCapacity, onBufferOverflow, start = CoroutineStart.ATOMIC, block = collectToFun)
...
}
前面提到 ChannelFlow 是热流。只要上游产生数据,就会立即发射给下游收集者。
ChannelFlow 是一个抽象类,并且被标记为内部 Api,不应该在外部代码直接使用。
注意到它内部有一个方法 produceImpl 返回的是一个 ReceiveChannel,它的实现是收集上游发射的数据,然后发送到 Channel 中。
有此作为基础。我们可以 调用 asChannelFlow 将 Flow 转换 ChannelFlow, 进而转换成 Channel 。
1.1.2 produceIn —— 将 Flow 转换为单播式 Channel
produceIn()转换创建了一个produce 协程来 collect 原Flow,因此该produce协程应该在恰当时候被关闭或者取消。转换后的 Channel 拥有处理背压的能力。其基本使用方式如下:
fun main() = runBlocking {
val flow = flow<Int> {
repeat(5) {
delay(500)
emit(it)
}
}
val produceIn = flow.produceIn(this)
for (ele in produceIn) {
println(ele)
}
}
输出结果:
0
1
2
3
4
查看 produceIn 源码:
@FlowPreview
public fun <T> Flow<T>.produceIn(scope: CoroutineScope): ReceiveChannel<T> = asChannelFlow().produceImpl(scope)
1.1.3 broadcastIn —— 将 Flow 转换为广播式 BroadcastChannel。
broadcastIn 转换方式与 produceIn 转换方式实现原理一样,区别是创建出来的 BroadcastChannel。
源码如下:
public fun <T> Flow<T>.broadcastIn(
scope: CoroutineScope,
start: CoroutineStart = CoroutineStart.LAZY
): BroadcastChannel<T> {
// Backwards compatibility with operator fusing
val channelFlow = asChannelFlow()
val capacity = when (channelFlow.onBufferOverflow) {
BufferOverflow.SUSPEND -> channelFlow.produceCapacity
BufferOverflow.DROP_OLDEST -> Channel.CONFLATED
BufferOverflow.DROP_LATEST ->
throw IllegalArgumentException("Broadcast channel does not support BufferOverflow.DROP_LATEST")
}
return scope.broadcast(channelFlow.context, capacity = capacity, start = start) {
collect { value ->
send(value)
}
}
}
使用方式见上文 BroadcastChannel。
和 BroadcastChannel 一样,broadcastIn 也标记为过时的 API, 不建议继续使用了。
1.2 Channel 转换为 Flow
1.2.1 consumeAsFlow/receiveAsFlow —— 将单播式 Channel 转换为 Flow
使用 consumeAsFlow()/receiveAsFlow() 将 Channel 转换为 Flow
fun main() = runBlocking<Unit> {
val testChannel = Channel<String>()
val testFlow = testChannel.receiveAsFlow()
launch {
testFlow.collect {
println(it)
}
}
delay(100)
testChannel.send("hello")
delay(100)
testChannel.send("coroutine")
delay(100)
testChannel.close() // 注意只有 Channel 关闭了,协程才能结束
}
查看源码:
public fun <T> ReceiveChannel<T>.consumeAsFlow(): Flow<T> = ChannelAsFlow(this, consume = true)
public fun <T> ReceiveChannel<T>.receiveAsFlow(): Flow<T> = ChannelAsFlow(this, consume = false)
private class ChannelAsFlow<T>(
private val channel: ReceiveChannel<T>,
private val consume: Boolean,
context: CoroutineContext = EmptyCoroutineContext,
capacity: Int = Channel.OPTIONAL_CHANNEL,
onBufferOverflow: BufferOverflow = BufferOverflow.SUSPEND
) : ChannelFlow<T>(context, capacity, onBufferOverflow) {}
consumeAsFlow 和 receiveAsFlow 都是调用 ChannelAsFlow 将 Channel 转换成了 ChannelFlow,所以转换结果是热流。但它们传递的第二个参数 consume 不一样。两者区别如下:
- 使用
consumeAsFlow()转换成的 Flow 只能有一个收集器收集,如果有多个收集器收集,将会抛出如下异常:
Exception in thread "main" java.lang.IllegalStateException: ReceiveChannel.consumeAsFlow can be collected just once
- 使用
receiveAsFlow()转换成的 Flow 可以有多个收集器收集,但是保证每个元素只能被一个收集器收集到,即单播式。
通俗点说,就是使用 consumeAsFlow() 只能有一个消费者。 使用 receiveAsFlow() 可以有多个消费者,但当向 Channel 中发射一个数据之后,收到该元素的消费者是不确定的。
1.2.2 asFlow —— 将广播式 BroadcastChannel 转换为 Flow
与单播式相对的就是广播式,让每个消费者都收到该元素,这就需要一个广播式的 Chanel:BroadcastChanel。
BroadcastChannel 调用 asFlow() 方法即可将其转换为 Flow。
由于该方法也被标记为过时了,替代方案有 SharedFlow 和 StateFlow。
二、SharedIn —— 将冷数据流转换为热数据流
将 flow 转换为 SharedFlow,可以使用 SharedIn 方法:
public fun <T> Flow<T>.shareIn(
scope: CoroutineScope,
started: SharingStarted,
replay: Int = 0
): SharedFlow<T> {
...
}
参数解释:
- CoroutineScope 用于共享数据流的 CoroutineScope。此作用域函数的生命周期应长于任何使用方,以使共享数据流在足够长的时间内保持活跃状态
- replay 每个新收集器的数据项数量
- started “启动” 方式
启动方式有:
public fun interface SharingStarted {
public companion object {
// 立即启动,并且永远不会自动停止
- public val Eagerly: SharingStarted = StartedEagerly()
// 第一个订阅者注册后启动,并且永远不会自动停止
- public val Lazily: SharingStarted = StartedLazily()
// 第一个订阅者注册后启动,最后一个订阅者取消注册后停止
- public fun WhileSubscribed(
stopTimeoutMillis: Long = 0,
replayExpirationMillis: Long = Long.MAX_VALUE
): SharingStarted =
StartedWhileSubscribed(stopTimeoutMillis, replayExpirationMillis)
}
}
三、callbackFlow —— 将基于回调的 API 转换为数据流
Kotlin 协程和 Flow 可以完美解决异步调用、线程切换的问题。设计接口时,可以类似 Rxjava 那样,避免使用回调。比如 Room 在内的很多库已经支持将协程用于数据流操作。对于那些还不支持的库,也可以将任何基于回调的 API 转换为协程。
callbackFlow 是一个数据流构建器,可以将基于回调的 API 转换为数据流。
3.1 callbackFlow 的使用
举例:
interface Result<T> {
fun onSuccess(t: T)
fun onFail(msg: String)
}
fun getApi(res: Result<String>) {
thread{
printWithThreadInfo("getApiSync")
Thread.sleep(1000) // 模拟耗时任务
res.onSuccess("hello")
}.start()
}
getApi() 是一个基于回调设计的接口。如何使用 callbackFlow 转换为 Flow 呢?
fun getApi(): Flow<String> = callbackFlow {
val res = object: Result<String> {
override fun onSuccess(t: String) {
trySend(t)
close(Exception("completion"))
}
override fun onFail(msg: String) {
}
}
getApi(res)
// 一定要调用骨气函数 awaitClose, 保证流一直运行。在`awaitClose` 中移除 API 订阅,防止任务泄漏。
awaitClose {
println("close")
}
}
// 新的 Api 使用方式
fun main() = runBlocking<Unit> {
getApi().flowOn(Dispatchers.IO)
.catch {
println("getApi fail, cause: ${it.message}")
}.onCompletion {
println("onCompletion")
}.collect {
printWithThreadInfo("getApi success, result: $it")
}
}
这时候你可能有疑问了,这在流的内部不还是使用了基于接口的调用吗,分明没有更方便。看下面的例子,就能体会到了。
3.2 callbackFlow 实战
Android 开发中有一个常见的场景:输入关键字进行查询。比如有个 EditText,输入文字后,基于输入的文字进行网络请求或者数据库查询。
假设查询数据的接口:
fun <T>query(keyWord: String): Flow<T> {
return flow {
//...
}
}
首先定义一个方法将 EditText 内容变化的回调转换成 Flow
fun textChangeFlow(editText: EditText): Flow<String> = callbackFlow {
val watcher = object : TextWatcher {
override fun beforeTextChanged(s: CharSequence?, start: Int, count: Int, after: Int) {
}
override fun onTextChanged(s: CharSequence?, start: Int, before: Int, count: Int) {
}
override fun afterTextChanged(s: Editable?) {
s?.let {
trySend(s.toString())
}
}
}
editText.addTextChangedListener(watcher)
awaitClose {
editText.removeTextChangedListener(watcher)
}
}
使用:
scope.launch{
textChangeFlow(editText)
.debounce(300) // 防抖处理
.flatMapLatest { keyWord -> // 只对最新的值进行搜索
flow {
<String>query(keyWord)
}
}.collect {
// ... 处理最终结果
}
}
在这个过程中,我们可以充分使用 Flow 的各种变换,对我们的中间过程进行处理。实现一些很难实现的需求。
Kotlin 协程四 —— Flow 和 Channel 的应用的更多相关文章
- Kotlin协程通信机制: Channel
Coroutines Channels Java中的多线程通信, 总会涉及到共享状态(shared mutable state)的读写, 有同步, 死锁等问题要处理. 协程中的Channel用于协程间 ...
- Kotlin 协程一 —— 全面了解 Kotlin 协程
一.协程的一些前置知识 1.1 进程和线程 1.1.1基本定义 1.1.2为什么要有线程 1.1.3 进程与线程的区别 1.2 协作式与抢占式 1.2.1 协作式 1.2.2 抢占式 1.3 协程 二 ...
- rxjava回调地狱-kotlin协程来帮忙
本文探讨的是在tomcat服务端接口编程中, 异步servlet场景下( 参考我另外一个文章),用rxjava来改造接口为全流程异步方式 好处不用说 tomcat的worker线程利用率大幅提高,接口 ...
- Kotlin协程解析系列(上):协程调度与挂起
vivo 互联网客户端团队- Ruan Wen 本文是Kotlin协程解析系列文章的开篇,主要介绍Kotlin协程的创建.协程调度与协程挂起相关的内容 一.协程引入 Kotlin 中引入 Corout ...
- python并发编程之gevent协程(四)
协程的含义就不再提,在py2和py3的早期版本中,python协程的主流实现方法是使用gevent模块.由于协程对于操作系统是无感知的,所以其切换需要程序员自己去完成. 系列文章 python并发编程 ...
- Kotlin协程第一个示例剖析及Kotlin线程使用技巧
Kotlin协程第一个示例剖析: 上一次https://www.cnblogs.com/webor2006/p/11712521.html已经对Kotlin中的协程有了理论化的了解了,这次则用代码来直 ...
- Retrofit使用Kotlin协程发送请求
Retrofit2.6开始增加了对Kotlin协程的支持,可以通过suspend函数进行异步调用.本文简单介绍一下Retrofit中协程的使用 导入依赖 app的build文件中加入: impleme ...
- Kotlin协程基础
开发环境 IntelliJ IDEA 2021.2.2 (Community Edition) Kotlin: 212-1.5.10-release-IJ5284.40 我们已经通过第一个例子学会了启 ...
- Android Kotlin协程入门
Android官方推荐使用协程来处理异步问题.以下是协程的特点: 轻量:单个线程上可运行多个协程.协程支持挂起,不会使正在运行协程的线程阻塞.挂起比阻塞节省内存,且支持多个并行操作. 内存泄漏更少:使 ...
- Kotlin Coroutine(协程): 四、+ Retrofit
@ 目录 前言 一.准备工作 二.开始使用 1.简单使用 2.DSL 3.扩展函数 4.请求发起 总结 前言 Retrofit 从 2.6.0 版本开始, 内置了对 Kotlin Coroutines ...
随机推荐
- [转帖]配置logback上报日志到Skywalking
https://zhuanlan.zhihu.com/p/506119895 配置logback上报日志到Skywalking 配置logback上报日志到skywalking需要引入toolkit依 ...
- [转帖] GC耗时高,原因竟是服务流量小?
原创:扣钉日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处. 简介# 最近,我们系统配置了GC耗时的监控,但配置上之后,系统会偶尔出现GC耗时大于1s的报警,排查花了一些力气,故 ...
- 《SAIS Supervising and Augmenting Intermediate Steps for Document-Level Relation Extraction》论文阅读笔记
代码 原文地址 预备知识: 1.什么是标记索引(token indices)? 标记索引是一种用于表示文本中的单词或符号的数字编码.它们可以帮助计算机理解和处理自然语言.例如,假如有一个字典{ ...
- 全球 IPv4 耗尽,下个月开始收费!
哈喽大家好,我是咸鱼 IPv4(Internet Protocol version 4)是互联网上使用最广泛的网络层协议之一,于1981年在 RFC 791 中发布,它定义了 32 位的IP地址结构和 ...
- echarts在左下角添加单位
配置单位 option = { xAxis: { type: 'category', data: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], ...
- Python 实现文件关键字扫描
第一段代码用户传入一个文件夹,自动扫描文件夹内特定文件是否存在某些关键字,如果存在则输出该文件的路径信息. # coding=gbk import sys,os,re def spider(scrip ...
- [Java] 解析Xml配置文件
1.解析方法 import javax.xml.parsers.DocumentBuilder;import javax.xml.parsers.DocumentBuilderFactory;impo ...
- JuiceFS 新手必知 24 问
JuiceFS 是一个创新性的软件产品,很多初次尝试的小伙伴对产品和用法感到很多疑惑,所以为了帮助大家快速理解并上手 JuiceFS,我们整理了24个关于 JuiceFS 经典的问题答案,相信经过这 ...
- Python 元组详细使用
1. 元组 元组和列表类似,但属于不可变序列,元组一旦创建,用任何方法都不可修改其元素. 元组的定义方式和列表相同,但定义时所有元素是放在一对圆括号"()"中,而不是方括号中. 1 ...
- 洛谷P2670 扫雷游戏 关于区域搜索标记的坐标增量法
最简单的思路就是扫描一边所有节点,对每个非地雷节点,去检查一下他八个方向的元素是否有'*',有的话就加一 但是逐个写出有点麻烦,我们不妨定义两个增量数组来存储每一次的相对位移,对每次检查只需要遍历这个 ...