JMH – Java基准测试
官方资源
应用场景
- 对要使用的数据结构不确定,不知道谁的性能更好
- 对历史方法代码重构,要评判改造之后的性能提升多少 (我要做的场景)
- 想准确地知道某个方法需要执行多长时间,以及执行时间和输入之间的相关性
- 对比接口不同实现在给定条件下的吞吐量
- 查看多少百分比的请求在多长时间内完成
背景限制(防杠指南)
- 业务场景?
因为当前项目是接手比较老的项目,已经有成熟业务在跑,原先的生成模型是nextByCalendarAndRandom, 序号生成是采用两位随机数,然后随机数产生了冲突,一毫秒内产生的两个随机数有冲突, - 为什么不直接使用 snowflake?
原先的生成逻辑 6(商户号) + 15(yyMMddHHmmssSSS 最大长度,可能比15小) + 2(随机数) = 23 (最大长度)
如果使用雪花算法,则 6 + 19 = 25 (最大长度),且现在业务方较多,不确定对方是否有限制该字段长度,再就是如果对雪花算法进行裁剪,也不能保证肯定不会出现冲突,经衡量过后,暂时不使用雪花算法,后续业务方能确定长度没有问题,就可以升级 - 这个算法不是分布式的,如果是两台服务器,则出现冲突的可能性就变大了
是的,如果两台服务同时运行,然后又同时有请求进来,就有很大的可能性出现冲突,但现在的业务状况是单体架构,只不过做了主备服务,主服务宕机,备份才会启动,暂时不会两台服务同时启动 - 那如果采用
nextByCalendarAndAtomicInteger自增,就表示一毫秒最大只有100个请求能进来?超过就肯定会冲突?
是的,这个也是业务决定的,如果我们当前的业务量超过每毫秒超100,那问题可能不是我这里的冲突了,服务会率先被压垮 - 最终的业务采用什么方法?
使用了nextByLocalDateTimeAndAtomicInteger方法,也有每毫秒超100必定重复的限制
引用依赖
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-core</artifactId>
<version>1.35</version>
</dependency>
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-generator-annprocess</artifactId>
<version>1.35</version>
</dependency>
测试代码
@UtilityClass
public class IdWork {
@Deprecated
public static String nextByCalendarAndRandom(String merchantNo) {
Calendar now = Calendar.getInstance();
long random1 = Math.round(Math.random() * 9);
long random2 = Math.round(Math.random() * 9);
String timestamp = (now.get(Calendar.YEAR) + "").substring(2)
+ (now.get(Calendar.MONTH) + 1)
+ now.get(Calendar.DAY_OF_MONTH)
+ now.get(Calendar.HOUR_OF_DAY)
+ now.get(Calendar.MINUTE)
+ now.get(Calendar.SECOND)
+ now.get(Calendar.MILLISECOND);
return merchantNo + timestamp + random1 + random2;
}
@Deprecated
public static String nextByLocalDateTimeAndRandom(String merchantNo) {
LocalDateTime now = LocalDateTime.now();
long random1 = Math.round(Math.random() * 9);
long random2 = Math.round(Math.random() * 9);
String timestamp = (now.getYear() + "").substring(2)
+ now.getMonthValue()
+ now.getDayOfMonth()
+ now.getHour()
+ now.getMinute()
+ now.getSecond()
+ (now.getNano() / 1000000);
return merchantNo + timestamp + random1 + random2;
}
@Deprecated
public static String nextByCalendarAndAtomicInteger(String merchantNo) {
Calendar now = Calendar.getInstance();
String timestamp = (now.get(Calendar.YEAR) + "").substring(2)
+ (now.get(Calendar.MONTH) + 1)
+ now.get(Calendar.DAY_OF_MONTH)
+ now.get(Calendar.HOUR_OF_DAY)
+ now.get(Calendar.MINUTE)
+ now.get(Calendar.SECOND)
+ now.get(Calendar.MILLISECOND);
return merchantNo + timestamp + getSeqNo();
}
@Deprecated
public static String nextByLocalDateTimeAndAtomicInteger(String merchantNo) {
LocalDateTime now = LocalDateTime.now();
String timestamp = (now.getYear() + "").substring(2)
+ now.getMonthValue()
+ now.getDayOfMonth()
+ now.getHour()
+ now.getMinute()
+ now.getSecond()
+ (now.getNano() / 1000000);
return merchantNo + timestamp + getSeqNo();
}
public static String nextBySnowflake(String merchantNo) {
return merchantNo + IdGenerator.next();
}
private static AtomicInteger seqNo = new AtomicInteger(1);
private static String getSeqNo() {
int curSeqNo = seqNo.getAndIncrement();
if (curSeqNo > 99) { // 重置,也可以取模
seqNo = new AtomicInteger(1);
}
if (curSeqNo < 10) {
return "0" + curSeqNo;
}
return curSeqNo + "";
}
public static void main(String[] args) {
String next1 = IdWork.nextByCalendarAndRandom("900087");
System.out.println(next1);
String next2 = IdWork.nextByLocalDateTimeAndRandom("900087");
System.out.println(next2);
String next3 = IdWork.nextByCalendarAndAtomicInteger("900087");
System.out.println(next3);
String next4 = IdWork.nextByLocalDateTimeAndAtomicInteger("900087");
System.out.println(next4);
String next5 = IdWork.nextBySnowflake("900087");
System.out.println(next5);
}
}
public class IdTest {
@Benchmark
public String getIdBySnowflake() {
return IdWork.nextBySnowflake("900087");
}
@Benchmark
public String nextByCalendarAndRandom() {
return IdWork.nextByCalendarAndRandom("900087");
}
@Benchmark
public String nextByLocalDateTimeAndRandom() {
return IdWork.nextByLocalDateTimeAndRandom("900087");
}
@Benchmark
public String nextByCalendarAndAtomicInteger() {
return IdWork.nextByCalendarAndAtomicInteger("900087");
}
@Benchmark
public String nextByLocalDateTimeAndAtomicInteger() {
return IdWork.nextByLocalDateTimeAndAtomicInteger("900087");
}
public static void main(String[] args) throws RunnerException {
// 吞吐量
// Options opt = new OptionsBuilder()
// .include(IdTest.class.getSimpleName())
// .mode(Mode.Throughput)
// .forks(1)
// .build();
// 平均耗时
Options opt = new OptionsBuilder()
.include(IdTest.class.getSimpleName())
.mode(Mode.AverageTime)
.timeUnit(TimeUnit.NANOSECONDS)
.forks(1)
.build();
new Runner(opt).run();
}
// 吞吐量
// Benchmark Mode Cnt Score Error Units
// IdTest.getIdBySnowflake thrpt 5 4070403.840 ± 11302.832 ops/s
// IdTest.nextByCalendarAndAtomicInteger thrpt 5 4201822.821 ± 177869.095 ops/s
// IdTest.nextByCalendarAndRandom thrpt 5 4085723.001 ± 47505.309 ops/s
// IdTest.nextByLocalDateTimeAndAtomicInteger thrpt 5 5036852.390 ± 153313.836 ops/s
// IdTest.nextByLocalDateTimeAndRandom thrpt 5 5199148.189 ± 405132.888 ops/s
// 平均耗时
// Benchmark Mode Cnt Score Error Units
// IdTest.getIdBySnowflake avgt 5 245.739 ± 0.302 ns/op
// IdTest.nextByCalendarAndAtomicInteger avgt 5 239.174 ± 4.244 ns/op
// IdTest.nextByCalendarAndRandom avgt 5 251.084 ± 5.798 ns/op
// IdTest.nextByLocalDateTimeAndAtomicInteger avgt 5 197.332 ± 0.779 ns/op
// IdTest.nextByLocalDateTimeAndRandom avgt 5 212.105 ± 1.888 ns/op
}
概念理解

| 类型 | 作用域 | 描述 | 备注 |
|---|---|---|---|
| Benchmark | ElementType.METHOD | 最重要的注解,标记需要执行的方法 | |
| BenchmarkMode | ElementType.METHOD, ElementType.TYPE | 统计的维度,有吞吐量,平均耗时,也可以组合使用 | |
| Fork | ElementType.METHOD, ElementType.TYPE | 复制多个进程来执行方法,每轮默认Iteration循环5次,如果fork 3,则会执行3*5 次,一般默认值1就可以 | |
| Measurement | ElementType.METHOD, ElementType.TYPE | 方法控制:循环次数,每次循环时间以及对应的时间单位 | |
| Warmup | ElementType.METHOD,ElementType.TYPE | 预热,避免系统冷启动导致的性能测试不准 | |
| OutputTimeUnit | ElementType.METHOD, ElementType.TYPE | 输出时间单位,默认是秒 | |
| Param | ElementType.FIELD | 可以指定遍历参数,针对特殊字段测试不同的性能 | |
| Setup | ElementType.METHOD | 启动类设置,类似 junit Before类型注解 | |
| TearDown | ElementType.METHOD | 销毁类设置,类似junit After类型注解,一般用于销毁池化的资源 | |
| Threads | ElementType.METHOD,ElementType.TYPE | ||
| Timeout | ElementType.METHOD,ElementType.TYPE | ||
| AuxCounters | ElementType.TYPE | 辅助计数器,可以统计 @State 修饰的对象中的 public 属性被执行的情况 | |
| Group | ElementType.METHOD | ||
| GroupThreads | ElementType.METHOD | ||
| CompilerControl | ElementType.METHOD, ElementType.CONSTRUCTOR, ElementType.TYPE | 内联扩展是一种特别的用于消除调用函数时所造成的固有时间消耗方法,这里用来控制方法或类是否内联 | |
| OperationsPerInvocation | ElementType.METHOD, ElementType.TYPE |
BenchmarkMode 执行模式(可以多个组合执行)
| 类型 | 描述 |
|---|---|
| Throughput | 每段时间执行的次数,一般是秒 |
| AverageTime | 平均时间,每次操作的平均耗时 |
| SampleTime | 在测试中,随机进行采样执行的时间 |
| SingleShotTime | 在每次执行中计算耗时 |
| All | 所有模式 |
// 常用的注解
@BenchmarkMode({Mode.Throughput,Mode.AverageTime})
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 3, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(1)
public class BenchmarkTest {
@Benchmark
public long test() {}
}
// 使用 OptionsBuilder 建造者模式构建 Options, 然后在main方法执行,建议使用
Options opt = new OptionsBuilder()
.include(IdTest.class.getSimpleName())
.mode(Mode.AverageTime)
.mode(Mode.Throughput)
.timeUnit(TimeUnit.NANOSECONDS)
.warmupIterations(3)
.warmupTime(TimeValue.seconds(1))
.measurementIterations(5)
.measurementTime(TimeValue.seconds(1))
.forks(1)
.build();
一些提示
避免循环
JVM会对循环进行优化,这样会导致获取的测试结果不准确。
引用资源
jmh-java-microbenchmark-harness
jenkov: java-performance
jmh-benchmark-with-examples
Java基准测试工具 —— JMH使用指南
JMH – Java基准测试的更多相关文章
- JMH java基准测试
Measure, don’t guess! JMH适用场景 JMH只适合细粒度的方法测试 原理 编译时会生成一些测试代码,一般都会继承你的类 maven依赖 <dependencies> ...
- 健壮的 Java 基准测试
健壮的 Java 基准测试 健壮的 Java 基准测试,第 1 部分: 问题 了解 Java 代码基准测试的问题 Brent Boyer, 程序员, Elliptic Group, Inc. 简介:程 ...
- Micro Benchmark Framework java 基准测试类库
Micro Benchmark Framework 框架主要是method 层面上的 benchmark,精度可以精确到微秒级 比较典型的使用场景还有: 想定量地知道某个函数需要执行多长时间,以及执行 ...
- jmh 微基准测试
选择依据:对某段代码的性能测试. 1.运行方法 mvn clean install java -jar target/benchmarks.jar JMHSample_02 -f 1 2.maven ...
- JMH基准测试框架
jmh-gradle-plugin, 集成JMH基准测试框架和 Gradle 0 赞 0 评论 文章标签:Gradle JMH 基准 INT benchmark framework 帧 ...
- JMH-大厂是如何使用JMH进行Java代码性能测试的?必须掌握!
Java 性能测试难题 现在的 JVM 已经越来越为智能,它可以在编译阶段.加载阶段.运行阶段对代码进行优化.比如你写了一段不怎么聪明的代码,到了 JVM 这里,它发现几处可以优化的地方,就顺手帮你优 ...
- Java基准性能测试--JMH使用介绍
JMH是什么 JMH是Java Microbenchmark Harness的简称,一个针对Java做基准测试的工具,是由开发JVM的那群人开发的.想准确的对一段代码做基准性能测试并不容易,因为JVM ...
- Java监控工具介绍,VisualVm ,JProfiler,Perfino,Yourkit,Perf4J,JProbe,Java微基准测试
本文是本人前一段时间做一个简单Java监控工具调研总结,主要包括VisualVm ,JProfiler,Perfino,Yourkit,Perf4J,JProbe,以及对Java微基准测试的简单介绍, ...
- Java监控工具介绍,VisualVm ,JProfiler,Perfino,Yourkit,Perf4J,JProbe,Java微基准测试【转】
Java监控工具介绍,VisualVm ,JProfiler,Perfino,Yourkit,Perf4J,JProbe,Java微基准测试[转] 本文是本人前一段时间做一个简单Java监控工具调研总 ...
- [翻译]现代java开发指南 第二部分
现代java开发指南 第二部分 第二部分:部署.监控 & 管理,性能分析和基准测试 第一部分,第二部分 =================== 欢迎来到现代 Java 开发指南第二部分.在第一 ...
随机推荐
- [Linux]常用命令之【netstat/ps/lsof/ss/kill/】#进程/服务/端口#
查看系统中最近的端口连接记录 [root@sdc01 ~]# lsof -Pnl +M -i4 | grep "154" sshd 30963 0 3u IPv4 65160732 ...
- 五月八号java基础知识点
1.对于容器中元素进行访问时,经常需要按照某种次序对容器中的每个元素访问且仅访问 一次,这就是遍历,也称为迭代.2.遍历是指从容器中获得当前元素的后续元素.对元素的遍历有很多种:第一种就是foreac ...
- 常用模块time模块
时间模块: 一:time import time time的解析: 时间分为三种格式: 第一种: 第二种: 第三种: 二:datatime import datatime #表达形式 print(d ...
- 逍遥自在学C语言 | 位运算符^的高级用法
前言 在上一篇文章中,我们介绍了|运算符的高级用法,本篇文章,我们将介绍^ 运算符的一些高级用法. 一.人物简介 第一位闪亮登场,有请今后会一直教我们C语言的老师 -- 自在. 第二位上场的是和我们一 ...
- VUE3企业级项目基础框架搭建流程(1)
开发环境和技术栈 操作系统 windows11 开发工具 vscode.phpstudy(小皮):nginx1.15.11, mysql5.7.26, php7.4,Navicat for MySQL ...
- boot-admin整合flowable官方editor-app源码进行BPMN2-0建模(续)
boot-admin整合flowable官方editor-app源码进行BPMN2-0建模(续) 书接上回 项目源码仓库github 项目源码仓库gitee boot-admin 是一款采用前后端分离 ...
- 阿里云 AIGC 白嫖 FC 搭建 stable diffusion
下午瞎逛在 V 站看到阿里在做推广,正好这几天在研究 stable-diffusion,就进去看了看,活动地址: https://developer.aliyun.com/topic/aigc . 主 ...
- TensorFlow - 框架实现中的三种 Graph
文章目录 TensorFlow - 框架实现中的三种 Graph 1. Graph 2. GraphDef 3. MetaGraph 4. Checkpoint 5. 总结 TensorFlow - ...
- PaddleDetection 快速上手
PaddleDetection 快速上手 本项目以路标数据集roadsign为例,详细说明了如何使用PaddleDetection训练一个目标检测模型,并对模型进行评估和预测. 本项目提供voc格式的 ...
- RocketMQ的简单使用
大家好,我是Leo!今天来和大家分享RocketMQ的一些用法. 领域模型介绍 Producer: 用于生产消息的运行实体. Topic: 主题,用于消息传输和存储的分组容器. MessageQueu ...