强化学习从基础到进阶-案例与实践[4.2]:深度Q网络DQN-Cart pole游戏展示

  • 强化学习(Reinforcement learning,简称RL)是机器学习中的一个领域,区别与监督学习和无监督学习,强调如何基于环境而行动,以取得最大化的预期利益。
  • 基本操作步骤:智能体agent在环境environment中学习,根据环境的状态state(或观测到的observation),执行动作action,并根据环境的反馈reward(奖励)来指导更好的动作。

比如本项目的Cart pole小游戏中,agent就是动图中的杆子,杆子有向左向右两种action

## 安装依赖
!pip install pygame
!pip install gym
!pip install atari_py
!pip install parl
import gym
import os
import random
import collections import paddle
import paddle.nn as nn
import numpy as np
import paddle.nn.functional as F

1.经验回放部分

经验回放主要做的事情是:把结果存入经验池,然后经验池中随机取出一条结果进行训练。

这样做有两个好处:

  1. 减少样本之间的关联性
  2. 提高样本的利用率

之所以加入experience replay是因为样本是从游戏中的连续帧获得的,这与简单的reinforcement learning问题相比,样本的关联性大了很多,如果没有experience replay,算法在连续一段时间内基本朝着同一个方向做gradient descent,那么同样的步长下这样直接计算gradient就有可能不收敛。因此experience replay是从一个memory pool中随机选取了一些expeirence,然后再求梯度,从而避免了这个问题。

class ReplayMemory(object):
def __init__(self, max_size):
self.buffer = collections.deque(maxlen=max_size) # 增加一条经验到经验池中
def append(self, exp):
self.buffer.append(exp) # 从经验池中选取N条经验出来
def sample(self, batch_size):
mini_batch = random.sample(self.buffer, batch_size)
obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], [] for experience in mini_batch:
s, a, r, s_p, done = experience
obs_batch.append(s)
action_batch.append(a)
reward_batch.append(r)
next_obs_batch.append(s_p)
done_batch.append(done) return np.array(obs_batch).astype('float32'), np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'), np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32') def __len__(self):
return len(self.buffer)

2.DQN

DQN算法较普通算法在经验回放和固定Q目标有了较大的改进,主要原因:

  • 经验回放:他充分利用了off-colicp的优势,通过训练把结果(成绩)存入Q表格,然后随机从表格中取出一条结果进行优化。这样子一方面可以:减少样本之间的关联性另一方面:提高样本的利用率 注:训练结果会存进Q表格,当Q表格满了以后,存进来的数据会把最早存进去的数据“挤出去”(弹出)
  • 固定Q目标他解决了算法更新不平稳的问题。 和监督学习做比较,监督学习的最终值要逼近实际结果,这个结果是固定的,但是我们的DQN却不是,他的目标值是经过神经网络以后的一个值,那么这个值是变动的不好拟合,怎么办,DQN团队想到了一个很好的办法,让这个值在一定时间里面保持不变,这样子这个目标就可以确定了,然后目标值更新以后更加接近实际结果,可以更好的进行训练。

3.模型Model

这里的模型可以根据自己的需求选择不同的神经网络组建。

DQN用来定义前向(Forward)网络,可以自由的定制自己的网络结构。

class DQN(nn.Layer):
def __init__(self, outputs):
super(DQN, self).__init__()
self.linear1 = nn.Linear(in_features=4, out_features=128)
self.linear2 = nn.Linear(in_features=128, out_features=24)
self.linear3 = nn.Linear(in_features=24, out_features=outputs) def forward(self, x):
x = self.linear1(x)
x = F.relu(x)
x = self.linear2(x)
x = F.relu(x)
x = self.linear3(x)
return x

4.智能体Agent的学习函数

这里包括模型探索与模型训练两个部分

Agent负责算法与环境的交互,在交互过程中把生成的数据提供给Algorithm来更新模型(Model),数据的预处理流程也一般定义在这里。

def sample(obs, MODEL):
global E_GREED
global ACTION_DIM
global E_GREED_DECREMENT
sample = np.random.rand() # 产生0~1之间的小数
if sample < E_GREED:
act = np.random.randint(ACTION_DIM) # 探索:每个动作都有概率被选择
else:
obs = np.expand_dims(obs, axis=0)
obs = paddle.to_tensor(obs, dtype='float32')
act = MODEL(obs)
act = np.argmax(act.numpy()) # 选择最优动作
E_GREED = max(0.01, E_GREED - E_GREED_DECREMENT) # 随着训练逐步收敛,探索的程度慢慢降低
return act def learn(obs, act, reward, next_obs, terminal, TARGET_MODEL, MODEL):
global global_step
# 每隔200个training steps同步一次model和target_model的参数
if global_step % 50 == 0:
TARGET_MODEL.load_dict(MODEL.state_dict())
global_step += 1 obs = np.array(obs).astype('float32')
next_obs = np.array(next_obs).astype('float32')
# act = np.expand_dims(act, -1)
cost = optimize_model(obs, act, reward, next_obs,
terminal, TARGET_MODEL, MODEL) # 训练一次网络
return cost def optimize_model(obs, action, reward, next_obs, terminal, TARGET_MODEL, MODEL):
"""
使用DQN算法更新self.model的value网络
"""
# 从target_model中获取 max Q' 的值,用于计算target_Q
global E_GREED
global ACTION_DIM
global E_GREED_DECREMENT
global GAMMA
global LEARNING_RATE
global opt opt = paddle.optimizer.Adam(learning_rate=LEARNING_RATE,
parameters=MODEL.parameters()) # 优化器(动态图) obs = paddle.to_tensor(obs)
next_obs = paddle.to_tensor(next_obs) next_pred_value = TARGET_MODEL(next_obs).detach()
best_v = paddle.max(next_pred_value, axis=1)
target = reward + (1.0 - terminal) * GAMMA * best_v.numpy()
target = paddle.to_tensor(target)
pred_value = MODEL(obs) # 获取Q预测值
# 将action转onehot向量,比如:3 => [0,0,0,1,0]
action = paddle.to_tensor(action.astype('int32'))
action_onehot = F.one_hot(action, ACTION_DIM)
action_onehot = paddle.cast(action_onehot, dtype='float32')
# 下面一行是逐元素相乘,拿到action对应的 Q(s,a)
pred_action_value = paddle.sum(paddle.multiply(action_onehot, pred_value), axis=1)
# 计算 Q(s,a) 与 target_Q的均方差,得到loss
cost = F.square_error_cost(pred_action_value, target)
cost = paddle.mean(cost)
avg_cost = cost
cost.backward()
opt.step()
opt.clear_grad() return avg_cost.numpy()

5.模型梯度更新算法

def run_train(env, rpm, TARGET_MODEL, MODEL):
MODEL.train()
TARGET_MODEL.train()
total_reward = 0
obs = env.reset() global global_step
while True:
global_step += 1
# 获取随机动作和执行游戏
action = sample(obs, MODEL) next_obs, reward, isOver, info = env.step(action) # 记录数据
rpm.append((obs, action, reward, next_obs, isOver)) # 在预热完成之后,每隔LEARN_FREQ步数就训练一次
if (len(rpm) > MEMORY_WARMUP_SIZE) and (global_step % LEARN_FREQ == 0):
(batch_obs, batch_action, batch_reward, batch_next_obs, batch_isOver) = rpm.sample(BATCH_SIZE)
train_loss = learn(batch_obs, batch_action, batch_reward,
batch_next_obs, batch_isOver, TARGET_MODEL, MODEL) total_reward += reward
obs = next_obs.astype('float32') # 结束游戏
if isOver:
break
return total_reward def evaluate(model, env, render=False):
model.eval()
eval_reward = []
for i in range(5):
obs = env.reset()
episode_reward = 0
while True:
obs = np.expand_dims(obs, axis=0)
obs = paddle.to_tensor(obs, dtype='float32')
action = model(obs)
action = np.argmax(action.numpy())
obs, reward, done, _ = env.step(action)
episode_reward += reward
if render:
env.render()
if done:
break
eval_reward.append(episode_reward)
return np.mean(eval_reward)

6.训练函数与验证函数

设置超参数

LEARN_FREQ = 5  # 训练频率,不需要每一个step都learn,攒一些新增经验后再learn,提高效率
MEMORY_SIZE = 20000 # replay memory的大小,越大越占用内存
MEMORY_WARMUP_SIZE = 200 # replay_memory 里需要预存一些经验数据,再开启训练
BATCH_SIZE = 32 # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来
LEARNING_RATE = 0.001 # 学习率大小
GAMMA = 0.99 # reward 的衰减因子,一般取 0.9 到 0.999 不等 E_GREED = 0.1 # 探索初始概率
E_GREED_DECREMENT = 1e-6 # 在训练过程中,降低探索的概率
MAX_EPISODE = 20000 # 训练次数
SAVE_MODEL_PATH = "models/save" # 保存模型路径
OBS_DIM = None
ACTION_DIM = None
global_step = 0
def main():
global OBS_DIM
global ACTION_DIM train_step_list = []
train_reward_list = []
evaluate_step_list = []
evaluate_reward_list = [] # 初始化游戏
env = gym.make('CartPole-v0')
# 图像输入形状和动作维度
action_dim = env.action_space.n
obs_dim = env.observation_space.shape
OBS_DIM = obs_dim
ACTION_DIM = action_dim
max_score = -int(1e4) # 创建存储执行游戏的内存
rpm = ReplayMemory(MEMORY_SIZE)
MODEL = DQN(ACTION_DIM)
TARGET_MODEL = DQN(ACTION_DIM)
# if os.path.exists(os.path.dirname(SAVE_MODEL_PATH)):
# MODEL_DICT = paddle.load(SAVE_MODEL_PATH+'.pdparams')
# MODEL.load_dict(MODEL_DICT) # 加载模型参数
print("filling memory...")
while len(rpm) < MEMORY_WARMUP_SIZE:
run_train(env, rpm, TARGET_MODEL, MODEL)
print("filling memory done") # 开始训练
episode = 0 print("start training...")
# 训练max_episode个回合,test部分不计算入episode数量
while episode < MAX_EPISODE:
# train part
for i in range(0, int(50)):
# First we need a state
total_reward = run_train(env, rpm, TARGET_MODEL, MODEL)
episode += 1 # print("episode:{} reward:{}".format(episode, str(total_reward))) # test part
# print("start evaluation...")
eval_reward = evaluate(TARGET_MODEL, env)
print('episode:{} e_greed:{} test_reward:{}'.format(episode, E_GREED, eval_reward)) evaluate_step_list.append(episode)
evaluate_reward_list.append(eval_reward) # if eval_reward > max_score or not os.path.exists(os.path.dirname(SAVE_MODEL_PATH)):
# max_score = eval_reward
# paddle.save(TARGET_MODEL.state_dict(), SAVE_MODEL_PATH+'.pdparams') # 保存模型 if __name__ == '__main__':
main()

filling memory...

filling memory done

start training...

episode:50 e_greed:0.0992949999999993 test_reward:9.0

episode:100 e_greed:0.0987909999999988 test_reward:9.8

episode:150 e_greed:0.09827199999999828 test_reward:10.0

episode:200 e_greed:0.09777599999999778 test_reward:8.8

episode:250 e_greed:0.09726999999999728 test_reward:9.0

episode:300 e_greed:0.09676199999999677 test_reward:10.0

episode:350 e_greed:0.0961919999999962 test_reward:14.8

项目链接fork一下即可运行

https://www.heywhale.com/mw/project/649e7d3f70567260f8f11d2b

更多优质内容请关注公号:汀丶人工智能

强化学习从基础到进阶-案例与实践[4.2]:深度Q网络DQN-Cart pole游戏展示的更多相关文章

  1. 强化学习入门基础-马尔可夫决策过程(MDP)

    作者:YJLAugus 博客: https://www.cnblogs.com/yjlaugus 项目地址:https://github.com/YJLAugus/Reinforcement-Lear ...

  2. 【算法总结】强化学习部分基础算法总结(Q-learning DQN PG AC DDPG TD3)

    总结回顾一下近期学习的RL算法,并给部分实现算法整理了流程图.贴了代码. 1. value-based 基于价值的算法 基于价值算法是通过对agent所属的environment的状态或者状态动作对进 ...

  3. [原创]java WEB学习笔记21:MVC案例完整实践(part 2)---DAO层设计

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  4. [原创]java WEB学习笔记20:MVC案例完整实践(part 1)---MVC架构分析

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  5. MySQL学习笔记——基础与进阶篇

    目录 一.###MySQL登录和退出 二.###MySQL常用命令 三.###MySQL语法规范 四.###基础查询 五.###条件查询 六.###排序查询 七.###常见函数的学习 八.###分组查 ...

  6. [原创]java WEB学习笔记26:MVC案例完整实践(part 7)---修改的设计和实现

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  7. [原创]java WEB学习笔记25:MVC案例完整实践(part 6)---新增操作的设计与实现

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  8. [原创]java WEB学习笔记24:MVC案例完整实践(part 5)---删除操作的设计与实现

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  9. [原创]java WEB学习笔记23:MVC案例完整实践(part 4)---模糊查询的设计与实现

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  10. [原创]java WEB学习笔记22:MVC案例完整实践(part 3)---多个请求对应一个Servlet解析

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

随机推荐

  1. Ajax请求 content_type ajax发送Fromdata对象

    目录 Ajax请求入门 ajax实现简单计算器 content_type urlencode fromdata application/json 自定义request.JSON ajax发送Fromd ...

  2. SE11/SE16N修改表数据

    1.SE11修改方法 首先修改显示格式 选择SE16标准列表 双击这条数据 输入/H,回车,再回车 修改CODE为EDIT,F8 此时,数据已经可以修改了 2.SE16N修改方法 2.1断点修改 输入 ...

  3. POJ:3279-Fliptile【状态压缩】【DFS】

    POJ-3279 经典[状态压缩][DFS]题型 题目大意:有一个 M * N 的格子,每个格子可以翻转正反面,它们有一面是黑色,另一面是白色.黑色翻转之后变成白色,白色翻转之后则变成黑色. 游戏要做 ...

  4. 汇编 | 数据段寄存器DS和[address]

    Description CPU要读写一个内存单元的时候,必须先给出这个内存单元的地址,在8086PC中,内存地址由段地址和偏移地址组成.8086CPU中有一个DS寄存器,通常用来存放要访问 数据的段地 ...

  5. 华东交通大学2019年ACM 双基 程序设计竞赛 个人题解(A - K)

    目前先放几道题面,等晚上做完实验补 Update:A ~ D,更新剩余的题面(题面复制会有链接水印,懒得一一去除.直接截图) A.签到 真·签到题 输出祝贺祖国成立70周年!即可 B.欧涛的烦恼 思路 ...

  6. kafka集群五、__consumer_offsets副本数修改

    系列导航 一.kafka搭建-单机版 二.kafka搭建-集群搭建 三.kafka集群增加密码验证 四.kafka集群权限增加ACL 五.kafka集群__consumer_offsets副本数修改 ...

  7. VueRouter和ReactRouter路由对比

    https://blog.csdn.net/xinxin_csdn/article/details/124652160

  8. JVM 性能调优 及 为什么要减少 Full GC

    本文为博主原创,未经允许不得转载: 系统上线压测,需要了解系统的瓶颈以及吞吐量,并根据压测数据进行对应的优化. 对压测进行 JVM 性能优化,有两条思路: 第一种情况 : 使用压测工具 jmeter  ...

  9. 函数指针、std::function、std::bind

    函数指针.std::function.std::bind 函数指针: C++语法中可以直接将函数名作为指针, void fun(int a, int b); 在这个函数声明中,函数指针即为fun,传入 ...

  10. Qt5.9 UI设计(五)——将Tabwidget与treeWidget相互关联

    前言 前面一章介绍了ControlTabWidget ControlTreeWidget maintitlebar 三个子页面同时布局到 mainwindow 的方法,本章介绍如何将ControlTr ...