本文分享自华为云社区《高性能网络设计秘笈:深入剖析Linux网络IO与epoll》,作者: Lion Long 。

一、epoll简介

epoll是Linux内核中一种可扩展的IO事件处理机制,可替代select和poll的系统调用。处理百万级并发访问性能更佳。

二、select的局限性

(1) 文件描述符越多,性能越差。 单个进程中能够监视的文件描述符存在最大的数量,默认是1024(在linux内核头文件中定义有 #define _FD_SETSIZE 1024),当然也可以修改,但是文件描述符数量越多,性能越差。

(2)开销巨大 ,select需要复制大量的句柄数据结构,产生了巨大的开销(内核/用户空间内存拷贝问题)。

(3)select需要遍历整个句柄数组才能知道哪些句柄有事件。

(4)如果没有完成对一个已经就绪的文件描述符的IO操作,那么每次调用select还是会将这些文件描述符通知进程,即水平触发。

(5)poll使用链表保存监视的文件描述符,虽然没有了监视文件数量的限制,但是其他缺点依旧存在。

由于以上缺点,基于select模型的服务器程序,要达到十万以上的并发访问,是很难完成的。因此,epoll出场了。

三、epoll的优点

(1)不需要轮询所有的文件描述符

(2)每次取就绪集合,都在固定位置

(3)事件的就绪和IO触发可以异步解耦

四、epoll函数原型

4.1、epoll_create(int size)

#include <sys/epoll.h>

int epoll_create(int size);

功能:创建epoll的文件描述符。

参数说明:size表示内核需要监控的最大数量,但是这个参数内核已经不会用到,只要传入一个大于0的值即可。 当size<=0时,会直接返回不可用,这是历史原因保留下来的,最早的epoll_create是需要定义一次性就绪的最大数量;后来使用了链表以便便维护和扩展,就不再需要使用传入的参数。

返回:返回该对象的描述符,注意要使用 close 关闭该描述符。

4.2、epoll_ctl

#include <sys/epoll.h>

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

// epoll_ctl对应系统调用sys_epoll_ctl

功能:操作epoll的文件描述符,主要是对epoll的红黑树节点进行操作,比如节点的增删改查。

参数说明:

4.2.1、event参数说明

struct epoll_event结构体原型

typedef union epoll_data{

void* ptr;

int fd;

uint32_t u32;

uint64_t u64

};

struct epoll_event{

uint32_t events;

epoll_data_t data;

}

events成员代表要监听的epoll事件类型

events成员:

data成员:

data 成员时一个联合体类型,可以在调用 epoll_ctl 给 fd 添加/修改描述符监听的事件时携带一些数据,方便后面的epoll_wait可以取出信息使用。

4.2.2、扩展说明:SYSCALL_DEFINE数字 的宏定义

跟着的数字代表函数需要的参数数量,比如SYSCALL_DEFINE1代表函数需要一个参数、SYSCALL_DEFINE4代表函数需要4个参数。

4.2.3、注意

epoll_ctl是非阻塞的,不会被挂起。

4.3、epoll_wait

函数原型

#include <sys/epoll.h>

int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

功能:阻塞一段时间,等待事件发生

返回:返回事件数量,事件集添加到events数组中。也就是遍历红黑树中的双向链表,把双向链表中的节点数据拷贝出来,拷贝完毕后把节点从双向链表中移除。

五、epoll使用步骤

step 1:创建epoll文件描述符

int epfd = epoll_create(1);

step 2:创建struct epoll_event结构体

struct epoll_event ev;

ev.data.fd=listenfd;//保存监听的fd,以便epoll_wait的后续操作

ev.events=EPOLLIN;//设置监听fd的可读事件

step 3:添加事件监听

epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);

step 4:等待事件

struct epoll_event events[EVENTS_LENGTH];

char rbuffer[MAX_BUFF]={ 0 };

char wbuffer[MAX_BUFF]={ 0 };

while(1)

{

int nready = epoll_wait(epfd,events,EVENTS_LENGTH,-1);//-1表示阻塞等待

int i=0;

for(i=0;i<nready;i++)

{

int clientfd=events[i].data.fd;

if(clientfd==listenfd)

{

struct sockaddr_in client;

int len=sizeof(client);

int confd=accept(listenfd,(struct sockaddr*)&client,&len);

//step 2:创建struct epoll_event结构体

struct epoll_event evt;

evt.data.fd=confd;//保存监听的fd,以便epoll_wait的后续操作

evt.events=EPOLLIN;//设置监听fd的可读事件

// step 3:添加事件监听

epoll_ctl(epfd,EPOLL_CTL_ADD,confd,&evt);

}

else if(events[i].events &EPOLLIN)

{

int ret = recv(clientfd,rbuffer,MAX_BUFF,0);

if(ret>0)

{

rbuffer[ret]='\0';//剔除干扰数据

printf("recv: %s\n",rbuffer);

memcpy(wbuffer,rbuffer,MAX_BUFF);//拷贝数据,做回传示例

//step 2:创建struct epoll_event结构体

struct epoll_event evt;

evt.data.fd=clientfd;//保存监听的fd,以便epoll_wait的后续操作

evt.events=EPOLLOUT;//设置监听fd的可写事件

// step 3:修改事件监听

epoll_ctl(epfd,EPOLL_CTL_MOD,clientfd,&evt);

}

}

else if(events[i].events &EPOLLOUT)

{

int ret = send(clientfd,wbuffer,MAX_BUFF,0);

printf("send: %s\n",wbuffer);

//step 2:创建struct epoll_event结构体

struct epoll_event evt;

evt.data.fd=clientfd;//保存监听的fd,以便epoll_wait的后续操作

evt.events=EPOLLIN;//设置监听fd的可读事件

// step 3:修改事件监听

epoll_ctl(epfd,EPOLL_CTL_MOD,clientfd,&evt);

}

}

}

六、完整示例代码

#include <stdio.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <fcntl.h>

#include <unistd.h>

#include <pthread.h>

#include <sys/epoll.h>

#include <string.h>

#define BUFFER_LENGTH 128

#define EVENTS_LENGTH 128

char rbuff[BUFFER_LENGTH] = { 0 };

char wbuff[BUFFER_LENGTH] = { 0 };

int main() {

// block

int listenfd = socket(AF_INET, SOCK_STREAM, 0); //

if (listenfd == -1) return -1;

// listenfd

struct sockaddr_in servaddr;

servaddr.sin_family = AF_INET;

servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

servaddr.sin_port = htons(9999);

if (-1 == bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr))) {

return -2;

}

#if 0 // nonblock

int flag = fcntl(listenfd, F_GETFL, 0);

flag |= O_NONBLOCK;

fcntl(listenfd, F_SETFL, flag);

#endif

listen(listenfd, 10);

int epfd = epoll_create(1);

struct epoll_event ev, events[EVENTS_LENGTH];

ev.events = EPOLLIN;

ev.data.fd = listenfd;

epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev);

printf("epfd : %d\n", epfd);

while (1)

{

int nready = epoll_wait(epfd, events, EVENTS_LENGTH, -1);

printf("nready --> %d\n",nready);

int i;

for (i = 0; i < nready;i++)

{

int clientfd = events[i].data.fd;

if (listenfd == clientfd)

{

// accept

struct sockaddr_in client;

int len = sizeof(client);

int conffd = accept(clientfd, (struct sockaddr*)&client,&len);

printf("conffd --> %d\n",conffd);

ev.events = EPOLLIN;

ev.data.fd = conffd;

epoll_ctl(epfd, EPOLL_CTL_ADD, conffd, &ev);

}

else if(events[i].events & EPOLLIN)//client

{

int ret=recv(clientfd, rbuff, BUFFER_LENGTH, 0);

if (ret > 0)

{

rbuff[ret] = '\0';

printf("recv buffer: %s\n", rbuff);

/*

int j;

for (j = 0; j < BUFFER_LENGTH;j++)

{

buff[j] = 'a' + (j % 26);

}

send(clientfd, buff, BUFFER_LENGTH, 0);

*/

memcpy(wbuff, rbuff, BUFFER_LENGTH);

ev.events = EPOLLOUT;

ev.data.fd = clientfd;

epoll_ctl(epfd, EPOLL_CTL_MOD, clientfd, &ev);

}

}

else if (events[i].events & EPOLLOUT)

{

send(clientfd, wbuff, BUFFER_LENGTH, 0);

printf("send --> %s\n",wbuff);

ev.events = EPOLLIN;

ev.data.fd = clientfd;

epoll_ctl(epfd, EPOLL_CTL_MOD, clientfd, &ev);

}

}

}

return 0;

}

七、epoll的缺点

读写使用相同的缓冲区。比如上述的示例中,wbuffer和rbuffer是使用同一个缓冲区的,所以需要rbuff[ret] = ‘\0’;去除杂数据。

八、水平触发(LT)与边沿触发(ET)

8.1、两者差异

1、水平触发可以一次recv,边沿触发需要用循环来recv;

2、水平触发可以使用阻塞模式,边沿模式不能

3、两者性能差异非常小,一般小数据使用水平触发LT,大数据使用边沿触发ET

4、listen fd最好使用水平触发,尽量不要边沿触发

5、当当recv的buffer小于接受的数据时:

(1)水平触发是只要有数据就一直触发,直到数据读完;

(2)边沿触发是来一次连接触发一次,如果接受数据的buffer不够大,则数据会保留在缓冲区,下次触发继续从缓冲区读出来;

6、一般,水平触发只需要一个recv,边沿触发需要搭配while从缓冲区读完数据

8.2、设置触发模式

默认是水平触发模式,在事件中设置中 | EPOLLET 就可以设置边沿触发,不设置则默认是水平触发。

例如:

ev.events=EPOLL_IN | EPOLLET

九、常见疑惑问题

9.1、为什么提前先定义一个事件?

我们需要注册,内核才会有事件来的时候通知进程。比如生活中要退一个快递,那么我们需要注册一个快递公司的账户,然后发送一个退快递请求时快递公司才能找到你并取快递。

9.2、epoll events超出EVENTS_LENGTH?

epoll会循环拷贝红黑树结构体中的双向链表节点,读取节点数据,直到没有事件。

9.3、缓冲区有多大空间时才返回可读/可写?

只要缓冲区有空间就返回可读、可写,不管空间多少。比如缓冲区是1024,但是有1023有数据了,这种极端条件也会返回可读、可写。

9.4、recv和send放在一起时,有什么问题?

发送给客户端数据很大的时候(大于内核缓冲区),就可能出现send不全,客户端recv不全,最好用EPOLLOUT单独处理发送数据事件。

总结

本文介绍了网络IO模型,引入了epoll作为Linux系统中高性能网络编程的核心工具。通过分析epoll的特点与优势,并给出使用epoll的注意事项和实践技巧,该文章为读者提供了宝贵的指导。通过掌握这些知识,读者能够构建高效、可扩展和稳定的网络应用,提供出色的用户体验。

点击关注,第一时间了解华为云新鲜技术~

高性能网络设计秘笈:深入剖析Linux网络IO与epoll的更多相关文章

  1. 点石成金:访客至上的网页设计秘笈(原书第2版) 中文PDF版

    可用性设计是Web设计中最重要也是难度最大的一项任务.本书作者根据多年从业的经验,剖析用户的心理,在用户使用的模式.为扫描进行设计.导航设计.主页布局.可用性测试等方面提出了许多独特的观点,并给出了大 ...

  2. 转:Linux网络IO并行化技术概览

    转:http://codinginet.com/articles/view/201605-linux_net_parallel?simple=1&from=timeline&isapp ...

  3. Socket-IO 系列(一)Linux 网络 IO 模型

    Socket-IO 系列(一)Linux 网络 IO 模型 一.基本概念 在正式开始讲 Linux IO 模型前,先介绍 5 个基本概念. 1.1 用户空间与内核空间 现在操作系统都是采用虚拟存储器, ...

  4. Linux网络IO函数以及TCP连接函数包装

    标准I/O VS 网络IO 标准I/O又称为标准I/O流,从某种意义上讲是全双工的,因为程序能够在同一个流上执行输入和输出. Unix/Linux对网络的抽象是一种称为套接字的文件类型.和任何Unix ...

  5. Unix/Linux 网络 IO 模型简介

    概述 Linux内核将所有外部设备都看做一个文件来操作.对该文件的读写操作会调用内核提供的系统命令, 返回一个fd(file descriptor)文件描述符.而对一个socket的读写也有相应的描述 ...

  6. 《DON'T MAKE ME THINK》/《点石成金访客至上的网页设计秘笈》 读书笔记

    1.web页面要尽可能简单,让用户不用思考就能知道页面的功能,如果要进行一些崭新的.开拓性的或者非常复杂的页面设计时, 此时要利用页面元素的外观.精心选择的名称.页面布局以及少量仔细斟酌过的文字,使页 ...

  7. 《点石成金:访客至上的Web和可用性设计秘笈(原书第3版)》--- 读书笔记

    这是一本绝妙的书, 它的英语书名是“Don't make me think”.更确切的说是个小册子, 但是作者的语言实在是让人忍俊不禁. 真TM的有趣, 为毛外国人就能写出如此美妙的书? 而国人却不能 ...

  8. Linux网络IO模型

    同步和异步,阻塞和非阻塞 同步和异步 关注的是结果消息的通信机制 同步:同步的意思就是调用方需要主动等待结果的返回 异步:异步的意思就是不需要主动等待结果的返回,而是通过其他手段比如,状态通知,回调函 ...

  9. Linux 网络编程(epoll)

    服务器端代码 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<sys/soc ...

  10. Linux 服务器IO模型 epoll

    epoll模型 #include <unistd.h> #include <sys/types.h> /* basic system data types */ #includ ...

随机推荐

  1. 2020/5/8—cf,我裂开来

    呜呜呜我爆零了呜呜呜ljll 嗯T1T2防爆零的没了呜呜呜在此纪念可怜的yjz大佬21发AC 太惨了(逃 先来说说我们都有些啥题目吧... T1 嗯,裂开了,当场裂开我一看!桶排!然后实现,嗯?嗯!嗯 ...

  2. 可视化-vscode安装pandas

    pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pandas提供了大量能使我们快速 ...

  3. Java并发编程和多线程的区别

    并发编程: 并发编程是一种编程范式,它关注的是编写能够正确和高效处理多个并发任务的程序.并发编程不仅包括多线程,还包括了处理多个独立任务的各种技术和模式,如进程.协程.分布式编程等.并发编程的目标是实 ...

  4. 把 map 中的 key 由驼峰命名转为下划线

    import cn.hutool.core.util.StrUtil; /** * 把 map 中的 key 由驼峰命名转为下划线 */public HashMap<String, Object ...

  5. linux其他命令(查找,软链接,打包和压缩,软件安装)笔记

    1,查找文件 *  是通配符,代表任意字符,0到多个. find 路径  -name  "*.txt"  : 查找在路径下所有以 .txt 结尾的文件. 2,软链接 (1)将桌面目 ...

  6. 【iOS开发】iOS App的加固保护原理:使用ipaguard混淆加固

    ​ 摘要 在开发iOS应用时,保护应用程序的安全是非常重要的.本文将介绍一种使用ipaguard混淆加固的方法来保护iOS应用的安全.通过字符串混淆.类名和方法名混淆.程序结构混淆加密以及反调试.反注 ...

  7. Java Junit单元测试(入门必看篇)

    Hi i,m JinXiang 前言 本篇文章主要介绍单元测试工具Junit使用以及部分理论知识 欢迎点赞  收藏 留言评论 私信必回哟 博主收将持续更新学习记录获,友友们有任何问题可以在评论区留言 ...

  8. 新手VSCode配置C++20

    最近买了本C++20的书,想要自己配置下在VScode的环境 例子代码: #include <iostream> #include <format> int main() { ...

  9. ES到底是个什么东西

    概念:全文检索服务器(是基于Lucene开发的全文检索服务器),它可以近乎实时存储.检索数据,底层仍然是Lucene来实现的所以索引和搜索功能,他的目的是通过的简单的RESTFul API 来隐藏Lu ...

  10. 聊聊数据库连接池 Druid

    在 Spring Boot 项目中,数据库连接池已经成为标配,然而,我曾经遇到过不少连接池异常导致业务错误的事故.很多经验丰富的工程师也可能不小心在这方面出现问题. 在这篇文章中,我们将探讨数据库连接 ...