Redis系列19:LRU内存淘汰算法分析
Redis系列1:深刻理解高性能Redis的本质
Redis系列2:数据持久化提高可用性
Redis系列3:高可用之主从架构
Redis系列4:高可用之Sentinel(哨兵模式)
Redis系列5:深入分析Cluster 集群模式
追求性能极致:Redis6.0的多线程模型
追求性能极致:客户端缓存带来的革命
Redis系列8:Bitmap实现亿万级数据计算
Redis系列9:Geo 类型赋能亿级地图位置计算
Redis系列10:HyperLogLog实现海量数据基数统计
Redis系列11:内存淘汰策略
Redis系列12:Redis 的事务机制
Redis系列13:分布式锁实现
Redis系列14:使用List实现消息队列
Redis系列15:使用Stream实现消息队列
Redis系列16:聊聊布隆过滤器(原理篇)
Redis系列17:聊聊布隆过滤器(实践篇)
Redis系列18:过期数据的删除策略
1 介绍
上一期我们介绍了 Redis系列18:过期数据的删除策略 ,但是无论是惰性删除还是定期删除,都可能存在删除不尽的情况,无法删除完全,比如每次删除完过期的 key 还是超过 25%,且这些 key 再也不会被客户端访问。
这样的话,定期删除和堕性删除可能都彻底的清理掉。如果这种情况长时间持续下去,可能会导致内存耗尽,所以Redis必须有一个完善的内存淘汰机制来保障。这就是我们这一篇的重点,Redis内存自动淘汰机制。
2 Redis内存淘汰策略
在 redis 中总共由8种淘汰策略,默认的淘汰策略是 noeviction。
| noeviction不淘汰策略(默认) | |||
| 淘汰数据策略 | 设置过期时间的淘汰策略 | valatile-random | 随机淘汰算法 |
| volatile-ttl | 淘汰失效时间最短的key | ||
| volatile-lru | 删除最近最少使用的key | ||
| volatile-lfu | 删除访问次数最少的key | ||
| 所有数据的淘汰策略 | allkeys-lru | 删除最近最少使用的key(全部) | |
| allkeys-lfu | 删除访问次数最少的key(全部) | ||
| allkey-random | 随机淘汰算法(全部) |
2.1 设置过期时间的淘汰策略
volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这4种策略淘汰的数据范围为设置了过期时间的数据。
2.2 所有 key 的淘汰策略
allkeys-lru、allkeys-random、allkeys-lfu 这3种淘汰策略无论是否设置了过期时间,内存不足时都会进行淘汰。
也就是说无论它的过期时间到没到,都有可能被删除。
3 LRU淘汰策略执行过程
这边以LRU算法为例子讲解,它的全称是 Least Rencently Used,即将最近最久未使用的算法进行数据淘汰。
我们这边以图例来讲解,整个过程如下:
- 首先设置一个淘汰池(一个链表),假设默认大小是16,里面的数据采用末尾淘汰制。如图中
- MRU:表示链表的表头,代表着最近最常被访问的数据;
- LRU:表示链表的表尾,代表最近最不常使用的数据。
- 如果淘汰池中的数据被访问,则会被移动到 MRU 端,其他位置的数据则相应往后移动一位
- 每次指令操作的时候,自旋会判断当前内存是否满足指令所需要的内存
- 如果当前内存不能满足,会从淘汰池中的尾部拿取一个最适合淘汰的数据
- 取样模式(配置 maxmemory-samples属性)从Redis中获取随机的取样数据,避免一次性读取All Key性能慢
- 在取样的数据中,根据淘汰算法 找到最适合淘汰的数据
- 将需要淘汰的数据从Redis删除,并且从淘汰池移除

这边注意,LRU 更新和新增数据都发生在链表首,删除数据都发生在链表尾。
水果 Orange 跟 Pitaya 被访问,被移动到MRU端,新增的Mango也被插入到MRU端。而最末端的Olive则被删除。
4 算法实现
以下是使用Go语言实现Redis LRU淘汰过程的示例代码,代码注释很清楚:
package main
import (
"container/list"
"fmt"
"time"
)
type Redis struct {
data map[string]*list.Element // 存储缓存项的键和值,以及它们在LRU链表中的位置
lru *list.List // LRU链表
}
type cacheItem struct {
key string
value string
// 记录该缓存项最后一次被访问的时间
lastAccess time.Time
}
func NewRedis() *Redis {
return &Redis{
data: make(map[string]*list.Element),
lru: list.New(),
}
}
func (r *Redis) Get(key string) (string, bool) {
// 从LRU链表中查找缓存项
if elem, ok := r.data[key]; ok {
// 将该缓存项移动到链表头部,表示最近被访问过
r.lru.MoveToFront(elem)
// 更新缓存项的最后访问时间
item := elem.Value.(*cacheItem)
item.lastAccess = time.Now()
return item.value, true
}
return "", false
}
func (r *Redis) Set(key string, value string) {
// 从LRU链表中查找缓存项
if elem, ok := r.data[key]; ok {
// 如果缓存项存在,更新其值和最后访问时间,并将其移动到链表头部
item := elem.Value.(*cacheItem)
item.value = value
item.lastAccess = time.Now()
r.lru.MoveToFront(elem)
return
}
// 如果缓存项不存在,创建新的缓存项并将其添加到LRU链表头部
item := &cacheItem{
key: key,
value: value,
lastAccess: time.Now(),
}
elem := r.lru.PushFront(item)
r.data[key] = elem
// 如果缓存空间已满,执行LRU淘汰操作
for r.lru.Len() > maxItems {
// 从链表尾部查找最久未被访问的缓存项
elem := r.lru.Back()
item := elem.Value.(*cacheItem)
// 如果该缓存项的过期时间已到达,则从链表中删除该缓存项
if item.lastAccess.Add(expireTime).Before(time.Now()) {
r.lru.Remove(elem)
delete(r.data, item.key)
} else {
// 否则,只从链表中删除该缓存项
r.lru.Remove(elem)
}
}
}
在这个示例中,我们使用了一个map来存储缓存项的键和值,以及它们在LRU链表中的位置。我们使用了一个LRU链表来存储缓存项,并按照访问时间将它们排序。在Get方法中,我们从LRU链表中查找缓存项,并将其移动到链表头部,表示最近被访问过。在Set方法中,如果缓存项已存在,我们更新其值和最后访问时间,并将其移动到链表头部;如果缓存项不存在,我们创建新的缓存项并将其添加到LRU链表头部。如果缓存空间已满,我们执行LRU淘汰操作,从链表尾部查找最久未被访问的缓存项,并从链表中删除它。注意,我们还检查了缓存项的过期时间,如果该缓存项已过期,则也会从链表中删除它。
5 总结
第4小节基本来自baidu文心一言的组织,非常感谢。
这一篇我们介绍了Redis的几种内存淘汰策略,并且详细分析了LRU算法的实现原理。下一篇我们分析下 LFU 算法。
Redis系列19:LRU内存淘汰算法分析的更多相关文章
- Redis系列11:内存淘汰策略
Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...
- redis过期策略和内存淘汰机制
目录 常见的删除策略 redis使用的过期策略:定期删除+惰性删除 定期删除 惰性删除 为什么要采用定期删除+惰性删除2种策略呢? redis内存淘汰机制 常见的删除策略 1.定时删除:在设置键的过期 ...
- Redis(六)--- Redis过期策略与内存淘汰机制
1.简述 关于Redis键的过期策略,首先要了解两种时间的区别,生存时间和过期时间: 生存时间:一段时长,如30秒.6000毫秒,设置键的生存时间就是设置这个键可以存在多长时间,命令有两个 expir ...
- redis过期策略与内存淘汰机制分析
过期策略: 我们在set key时,可以给一个expire time,就是过期时间 这段过期时间以后,redis对key删除使用:定期删除+惰性删除 定期删除指redis默认在100ms内随机抽取一些 ...
- redis过期策略、内存淘汰策略、持久化方式、主从复制
原文链接:https://blog.csdn.net/a745233700/article/details/85413179 一.Redis的过期策略以及内存淘汰策略:1.过期策略:定期删除+惰性删除 ...
- redis过期策略以及内存淘汰机制(理论+配置)
一.redis的过期策略: redis的过期策略是:定期删除+惰性删除redis在存储数据时,可能会设置过期时间,而所谓的定期删除,指的是redis默认是每隔100ms就随机抽取一些设置了过期时间的k ...
- redis 系列19 客户端
一. 概述 Redis服务器是可以与多个客户端建立网络连接,每个客户端可以向服务器发送命令请求,而服务器则接收并处理客户端发送的命令请求,并向客户端返回命令回复.通过使用I/O多路复用技术实现的文件事 ...
- Redis系列12:Redis 的事务机制
Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...
- LRU工程实现源码(一):Redis 内存淘汰策略
目录 内存淘汰是什么?什么时候内存淘汰 内存淘汰策略 Redis中的LRU淘汰算法 源码剖析 第一步:什么时候开始淘汰key 配置读取 检查时机 getMaxmemoryState 第二步:淘汰哪些k ...
- 【Redis】过期键删除策略和内存淘汰策略
Redis 过期键策略和内存淘汰策略 目录 Redis 过期键策略和内存淘汰策略 设置Redis键过期时间 Redis过期时间的判定 过期键删除策略 定时删除 惰性删除 定期删除 Redis过期删除策 ...
随机推荐
- 2021-02-23:给定一个正数n,求n的裂开方法数。规定:后面的数不能比前面的数小 。比如4的裂开方法有: 1+1+1+1、1+1+2、1+3、2+2、4,5种,所以返回5。
2021-02-23:给定一个正数n,求n的裂开方法数.规定:后面的数不能比前面的数小 .比如4的裂开方法有: 1+1+1+1.1+1+2.1+3.2+2.4,5种,所以返回5. 福哥答案2021-0 ...
- java中this的内存原理以及成员变量和局部变量
this的内存原理 1.this的作用: 区分局部变量和成员变量 eg: public class Student{ private int age; public void method(){ in ...
- Springboot通过谷歌Kaptcha 组件,生成图形验证码
图形验证码属于老生常谈了,具体细节这里就不说了.生成图形验证码的办法非常多,今天讲解一种通过Kaptcha组件快速生成图形验证码的方法.Kaptcha是谷歌开源的一款简单实用的图形验证码组件.我个人推 ...
- vue全家桶进阶之路40:Vue3父件传值给子件
在Vue3中,可以通过props将父组件的数据传递给子组件.具体步骤如下: 在父组件中定义要传递给子组件的数据,可以是data属性中的数据或者是计算属性computed中的数据. 在子组件中通过pro ...
- linux nfs共享存储服务
目录 一.nfs服务 二.nfs优点 三.配置文件 四.共享文件配置过程 五.实验 1.创建共享文件(两台终端共享) 一.nfs服务 概念:网络上共享文件系统的协议,运行多个服务器之间通过网络共享文件 ...
- SpringMVC 后台从前端获取单个参数
1.编写web.xml(模板) 2.springmvc配置文件 3.编写对应数据库字段的pojo实体类 @Data @AllArgsConstructor @NoArgsConstructor pub ...
- 第一课 使用开发者模式快速入门 Odoo 13
Odoo提供了一个快速应用开发框架,非常适合创建商业应用.这类应用通常用于保留业务记录,增删改查操作.Odoo 不仅简化了这类应用的创建,还提供了看板.日历.图表等视图的丰富组件,用于创建好看的用户界 ...
- 适用于Linux命令的10个R函数
由于微信不允许外部链接,你需要点击文章尾部左下角的 "阅读原文",才能访问文中链接. 这篇文章将介绍 10 个不同的 Linux 命令及其 R 实现方法. 如果您有兴趣学习更多 R ...
- 从 Blast2GO 本地化聊一聊 Linux 下 MySQL 的源码安装
Blast2GO 是一个基于序列相似性搜索的 GO 注释和功能分析工具,它可以直接统计分析基因功能信息,并可视化 GO 有向非循环图(DAG)上的相关功能特征,分析 BLAST.GO-mapping. ...
- CentOS7环境编译python3.9版本pjsua
环境:CentOS 7.6_x64 Python版本 :3.9.12 pjsip版本:2.13 一.背景描述 pjsip地址:https://www.pjsip.org/ GitHub地址:https ...