[洛谷P2472] [SCOI2007]蜥蜴
题目链接:
题目分析:
一道网络流,先来分析一下问题:
在一个\(r*c\)的图中分布了一些数,其他地方都用\(0\)填充,我们分别从指定的一些数出发,每次可以移动到周围距离为\(d\)以内的数上(或图外),原来的数会被\(-1\),任何时候数不能为负。各个数走法之间互相影响。问至多有多少个数出发能到达图外?
把这个题的限制条件列出来一下吧:
- 每个石柱只能站一只蜥蜴
- 每个石柱最多被经过其高度次
- 石柱与石柱之间,石柱与图边界之间要距离小于等于\(d\)才能到达
首先我的角度是以每个石柱本身的限制条件入手。我们知道一个高度为\(h\)的石柱最多可以被经过\(h\)次(显然,蜥蜴是不走回头路的,因为这是对资源的浪费),而网络流的基本性质之一,是每条边最多将其上限流满(相当于有一个上限),那么可以考虑将石柱的高度作为网络流建图边上的限制。但是每个石柱是一个点,怎么办呢,我们就考虑把每个石柱拆点,把编号为\(i\)的点拆成\(i\)和\(i + r * c\),然后把流入这个点的边全部接到\(i\)上,流出这个点的边全部接到\(i+r*c\)上,把限制加在两点之间的连边上(流量为\(h\))。这是对于石柱的处理,也是我认为这个问题中最关键的一步。
剩下的就比较好办了。
对于“每个石柱只能站一只蜥蜴”的限制条件,将“只能站一只”作为上界,源点向蜥蜴所在的每个石柱连边,边容量为\(1\)
对于石柱和石柱之间,石柱与图边界之间距离小于等于\(d\)才能到达的限制条件,因为图很小,我们考虑直接暴力枚举两个点,如果两个点都有石柱且距离小于等于\(d\),那么我们直接考虑两个石柱之间连一条容量为\(INF\)的边:除了距离,没有别的限制条件了,而距离的限制条件已经判断过了,并且每个石柱的限制已经在拆点的过程中加上去了,所以容量不需要做其他的限制,直接连\(INF\)即可。对于到达边界的限制条件,我们同样连一条\(INF\)的边(和前面的原因类似),距离判断只需要判断横纵就行,因为根据勾股定理,横纵都比\(d\)大显然斜着也比\(d\)大。
代码:
// luogu-judger-enable-o2
#include <bits/stdc++.h>
#define INF (1000000000 + 7)
#define N (10005 + 5)
#define M (100000 + 5)
#define int long long
using namespace std;
inline int read(){
int cnt = 0, f = 1; char c;
c = getchar();
while (!isdigit(c)) {
if(c == '-') f = -f;
c = getchar();
}
while (isdigit(c)) {
cnt = cnt * 10 + c - '0';
c = getchar();
}
return cnt * f;
}
int r, c, d, tot = 1, n;
int S, T;
int first[M], nxt[M], to[M], flow[M];
int mapp[N][N], a[N][N];
int dep[M], cnt[M];
char lizard[N][N];
inline void Add(int x, int y, int z) {
nxt[++tot] = first[x], first[x] = tot, to[tot] = y, flow[tot] = z;
nxt[++tot] = first[y], first[y] = tot, to[tot] = x, flow[tot] = 0;
}
inline bool pd(int i, int j) {
if (i <= d || j <= d) return true;
if (r - i + 1 <= d || c - j + 1 <= d) return true;
return false;
}
inline void build() {
S = 1;
for (register int i = 1; i <= r; i++)
for (register int j = 1; j <= c; j++)
a[i][j] = ++tot;
for (register int i = 1; i <= r; i++)
scanf("%s", lizard[i] + 1);
for (register int i = 1; i <= r; i++)
for (register int j = 1; j <= c; j++)
mapp[i][j] = lizard[i][j] - '0';
T = r * c * 2 + 2, tot = 1;
for (register int i = 1; i <= r; i++)
scanf("%s", lizard[i] + 1);
for (register int i = 1; i <= r; i++)
for (register int j = 1; j <= c; j++)
if (mapp[i][j]) {
Add(a[i][j], a[i][j] + r * c, mapp[i][j]);
if (pd(i, j)){
Add(a[i][j] + r * c, T, INF);
// cout<<i<<" "<<j<<endl;
}
}
for (register int i = 1; i <= r; i++)
for (register int j = 1; j <= c; j++)
for (register int k = 1; k <= r; k++)
for (register int p = 1; p <= c; p++) {
if (i == k && j == p) continue;
if (mapp[i][j] && mapp[k][p])
if ((i - k) * (i - k) + (j - p) * (j - p) <= d * d)
Add(a[i][j] + r * c, a[k][p], INF);
// Add(a[k][p] + r * c, a[i][j], INF);
}
for (register int i = 1; i <= r; i++)
for (register int j = 1; j <= c; j++)
if (lizard[i][j] == 'L') Add(S, a[i][j], 1), ++n;
}
inline void bfs_(int s) {
memset(dep, 0xff, sizeof(dep));
dep[s] = 0;
cnt[0] = 1;
queue<int> q;
q.push(s);
while (!q.empty()) {
int p = q.front();
q.pop();
for (register int i = first[p]; i >= 2; i = nxt[i]) {
int v = to[i];
if (dep[v] == -1) {
++cnt[dep[v] = dep[p] + 1];
q.push(v);
}
}
}
}
int max_flow;
int dfs_(int p, int f) {
if (p == T) {
max_flow += f;
return f;
}
int u = 0;
for (register int i = first[p]; i >= 2; i = nxt[i]) {
int v = to[i];
if (flow[i] && dep[v] == dep[p] - 1) {
int uu = dfs_(v, min(flow[i], f - u));
if (uu) {
flow[i] -= uu;
flow[i ^ 1] += uu;
u += uu;
}
if (u >= f) {
return u;
}
}
}
if (!--cnt[dep[p]]) {
dep[S] = r * c * 2 + 10;
}
++cnt[++dep[p]];
return u;
}
signed main() {
r = read(); c = read(); d = read();
build();
bfs_(T);
while (dep[S] < 2 * r * c + 9) dfs_(S, INF);
printf("%lld", n - max_flow);
return 0;
}
[洛谷P2472] [SCOI2007]蜥蜴的更多相关文章
- 洛谷P2472 [SCOI2007]蜥蜴 题解
题目链接: https://www.luogu.org/problemnew/show/P2472 分析: 这道题用最大流解决. 首先构建模型. 一根柱子可以跳入和跳出,于是拆成两个点:入点和出点. ...
- P2472 [SCOI2007]蜥蜴(网络流)
P2472 [SCOI2007]蜥蜴 把每个点拆成2个点,两点之间连边的边权为石柱高度 新建虚拟源点$S$和汇点$T$ $S$向所有有蜥蜴的点连边,边权1 其他边都连$inf$ 剩下就是裸的$dini ...
- P2472 [SCOI2007]蜥蜴(网络最大流)
P2472 [SCOI2007]蜥蜴 题目描述 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距 ...
- P2472 [SCOI2007]蜥蜴 (最大流)
题目 P2472 [SCOI2007]蜥蜴 解析 这个题思路比较清晰,本(qi)来(shi)以(jiu)为(shi)无脑建图跑最大流,结果挂了,整了一个小时后重新建图才过的. 建立一个超级源点和一个超 ...
- P2472 [SCOI2007]蜥蜴(最大流)
P2472 [SCOI2007]蜥蜴 自己第一道独立做题且一遍AC的网络流题纪念... 看到这道题我就想到网络流建图的方式了... 首先根据每个高度,我们将每个点拆成两个点限流.之后根据跳的最大距离, ...
- 【洛谷 P2472】 [SCOI2007]蜥蜴 (最大流)
题目链接 简单网络流. 源点向蜥蜴连流量为\(1\)的边. 能跳出去的点向汇点连流量为\(INF\)的边. 把每个点拆成\(2\)个点,\(O(n^4)\)枚举两两点,如果距离小于等于\(d\),就互 ...
- 洛谷$P$2472 蜥蜴 $[SCOI2007]$ 网络流
正解:网络流 解题报告: 传送门! $umm$一看就是个最大流呗,,,就直接考虑怎么建图趴$QwQ$ 首先看到这个高度减小其实就相当于对这个点的次数有约束,就显然拆点呗,流量为高度 然后$S$连向左侧 ...
- 【题解】Luogu P2472 [SCOI2007]蜥蜴
原题传送门 题目要求无法逃离的最少有多少 直接做肯定不好做,我们帮题目变一个说法:最多能逃离多少 这个询问一看就是最大流 考虑如何建图: 1.将S和每一个有蜥蜴的点连一条流量为1的边(每个蜥蜴只能用1 ...
- 洛谷 P2053 [SCOI2007]修车 解题报告
P2053 [SCOI2007]修车 题目描述 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术 ...
随机推荐
- nutch2.2.1+mysql抓取数据
基本环境:linux centos6.5 nutch2.2.1 源码包, mysql 5.5 ,elasticsearch1.1.1, jdk1.7 1.下载地址http://mirror.bjtu. ...
- Jedis整合单机、Sentinel和Cluster模式
配置文件和配置类 @Data @Configuration @ConfigurationProperties("jedis-config") public class JedisC ...
- 001-Java命名规范
1. 包名 多个单词都小写xxxyyyzzz 2.类名和接口名 多单词组成时,所有单词的首字母大写XxxYyyZzz 3.变量名和方法名 多单词组成时,第一个单词首字母小写,后面单词首字母军大写 xx ...
- 关于用Linux桌面版当工作系统这件事
Linux稳定性好,Linux软件开放--不过等到决定把Linux当作日常工作用系统时,就一言难尽了-- 我日常工作的需求有: 笔记本扩展屏幕 Golang开发 docker/kubernetes 输 ...
- Java 几种队列区别的简单说明
前言 队列,字面意思就可以明白. 是一种线性的数据暂存与管理工具. 也可以让各种业务功能进行逐个的队列运行. 此篇博客只说明一下Java有几种队列 未阻塞和阻塞队列的区别 未阻塞: 1.未阻塞的队列在 ...
- react添加多个域名proxy代理,跨域
在package.json中加入如下: { "name": "demo", "version": "0.1.0", &q ...
- 【JZOJ6367】工厂(factory)
description 大神 wyp 开了家工厂,工厂有 n 个工人和 p 条流水线. 工厂的工人都是睡神,因此第 i 个工人只会在 si 至 ti 时刻才会工作. 每个工人都会被分派到一条流水线上, ...
- python实现百度OCR图片识别
一.直接上代码 import base64 import requests class CodeDemo: def __init__(self,AK,SK,code_url,img_path): se ...
- linxu(centos)安装php-fpm
编译安装php-fpm 安装前准备 yum -y install gcc automake autoconf libtool make yum -y install gcc gcc-c++ glibc ...
- iServer添加Oracle Plus数据源、服务发布的问题
今天在将以Oracle Plus为数据源的工作空间发布成服务时,发现服务发布完后,看不见任何数据.最后发现,还需要在iserver服务器上安装oracle客户端才行.整理如下: 一.创建空间数据库账户 ...