two measures precision and recall of classification
In pattern recognition and information retrievial with binary classification , there are some measures ,such as recall , precision。
In classification task, the precision for a class is the number of true positive divided by the total number of elements labeled as belonging to the positive class(i.e. the sum of true positives and false positives ,which are items incorrectly labeled as belonging to the class.) And the recall, in this context, is defined as the number of true positives divided by the total numble of elements that actually belonging to the positive class(i.e. the sum of true positive and false negative .
Definition(In classification context)
for classification tasks, the terms true positve ,false positive ,true negative , false negative ,compare the results of the classifier under test with trusted external judgment.
The terms positive and negative refer to the classifier's prediction(sometimes known as the expection),and the terms true and false refer to whether that prediction corresponds to the external jugement(sometimes known as te observation)。
Let us define an experiment from P positive instances and N negative instances for some condition. The four outcomes can be formulated in a 2×2 contingency table or confusion matrix, as follows:

Precision and recall are then defined as:
precision = tp/(tp+fp)
recall = tp/(tp+fn)
Recall in this context is alse referred to as the true positive rate or sensitivity, and precision is alse referred to positive predictive vaule(PPV), some other related measures used in classification include true negative rate and accuracy. True negatvie rate is alse called specificty.

reference:
1、wikipedia : Precision and recall
2、Fawcett, Tom (2006). "An Introduction to ROC Analysis". Pattern Recognition Letters. 27 (8): 861 – 874. doi:10.1016/j.patrec.2005.10.010.
two measures precision and recall of classification的更多相关文章
- Alink漫谈(八) : 二分类评估 AUC、K-S、PRC、Precision、Recall、LiftChart 如何实现
Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Precision.Recall.LiftChart 如何实现 目录 Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Pre ...
- ROC曲线、AUC、Precision、Recall、F-measure理解及Python实现
本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AU ...
- 准确率和召回率(precision&recall)
在机器学习.推荐系统.信息检索.自然语言处理.多媒体视觉等领域,常常会用到准确率(precision).召回率(recall).F-measure.F1-score 来评价算法的准确性. 一.准确率和 ...
- 一道关于 precision、recall 和 threshold关系的机器学习题
Suppose you have trained a logistic regression classifier which is outputing hθ(x). Currently, you p ...
- precision、recall、accuracy的概念
机器学习中涉及到几个关于错误的概念: precision:(精确度) precision = TP/(TP+FP) recall:(召回率) recall = TP/(TP+FN) accuracy: ...
- 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- 分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1
轉自 https://blog.csdn.net/sinat_28576553/article/details/80258619 四个基本概念TP.True Positive 真阳性:预测为正,实 ...
- ROC,AUC,Precision,Recall,F1的介绍与计算(转)
1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...
- ROC,AUC,Precision,Recall,F1的介绍与计算
1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...
随机推荐
- springboot-实现文件下载
一 前言 本文实现的文件下载是使用Apache 的 commons-fileupload 实现:在之前的springboot系列文件中已经讲述过如何实现多文件上传:这篇文件实现的文件下载功能主要是能在 ...
- UCI 人口收入数据分析(python)
一.项目介绍 UCI上有许多免费的数据集可以拿来练习,可以在下面的网站找寻 http://archive.ics.uci.edu/ml/datasets.html 这次我使用的是人口收入调查,里面会有 ...
- Match3 Module For Game(THDN)
介绍 THDN的核心机制为Match3的利用,本文对Match3 Gameplay进行记录,并对其进行改良.THDN作为RogueLIke性质的游戏,玩家在随机生成的dungeon里进行探索并获 ...
- Java项目之家庭收支记账软件
模拟实现基于文本界面的家庭记账软件,该软件能够记录家庭的收入支出,并能够打印收支明细表. 项目采用分级菜单方式.主菜单如下: 假设家庭起始的生活基本金为10000元. 每次登记收入(菜单2)后,收入的 ...
- Faster Rcnn随笔
步骤:1.build_head()函数: 构建CNN基层网络图像被缩放16倍2.build_rpn()函数: 在feature map上生成box的坐标和判断是否有物体 generate_anchor ...
- forkjoin及其性能分析,是否比for循环快?
最近看了网上的某公开课,其中有讲到forkjoin框架.在这之前,我丝毫没听说过这个东西,很好奇是什么东东.于是,就顺道研究了一番. 总感觉这个东西,用的地方很少,也有可能是我才疏学浅.好吧,反正问了 ...
- (1)解锁 MongoDB replica set核心姿势
副本集Replica Set是一个术语,定义具有多节点的数据库集群,这些节点具有主从复制(master-slave replication) 且节点之间实现了自动故障转移. 这样的结构通常需要具有奇数 ...
- python暴力破解压缩包密码
啥也不说,直接上代码 #-*-coding:utf-8-*- import zipfile #生成1-999999的数字密码表, 要是有别的密码类型,对密码表改造一下就可以了,也可以上网下载某些类型的 ...
- 网络流 - 最大流构图入门 bzoj 1305
一次舞会有n个男孩和n个女孩.每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞.每个男孩都不会和同一个女孩跳两首(或更多)舞曲.有一些男孩女孩相互喜欢,而其他相互不喜欢(不会“单向喜欢”).每个男孩 ...
- 一个按键搞定日常git操作
Git is a free and open source distributed version control system designed to handle everything from ...