two measures precision and recall of classification
In pattern recognition and information retrievial with binary classification , there are some measures ,such as recall , precision。
In classification task, the precision for a class is the number of true positive divided by the total number of elements labeled as belonging to the positive class(i.e. the sum of true positives and false positives ,which are items incorrectly labeled as belonging to the class.) And the recall, in this context, is defined as the number of true positives divided by the total numble of elements that actually belonging to the positive class(i.e. the sum of true positive and false negative .
Definition(In classification context)
for classification tasks, the terms true positve ,false positive ,true negative , false negative ,compare the results of the classifier under test with trusted external judgment.
The terms positive and negative refer to the classifier's prediction(sometimes known as the expection),and the terms true and false refer to whether that prediction corresponds to the external jugement(sometimes known as te observation)。
Let us define an experiment from P positive instances and N negative instances for some condition. The four outcomes can be formulated in a 2×2 contingency table or confusion matrix, as follows:

Precision and recall are then defined as:
precision = tp/(tp+fp)
recall = tp/(tp+fn)
Recall in this context is alse referred to as the true positive rate or sensitivity, and precision is alse referred to positive predictive vaule(PPV), some other related measures used in classification include true negative rate and accuracy. True negatvie rate is alse called specificty.

reference:
1、wikipedia : Precision and recall
2、Fawcett, Tom (2006). "An Introduction to ROC Analysis". Pattern Recognition Letters. 27 (8): 861 – 874. doi:10.1016/j.patrec.2005.10.010.
two measures precision and recall of classification的更多相关文章
- Alink漫谈(八) : 二分类评估 AUC、K-S、PRC、Precision、Recall、LiftChart 如何实现
Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Precision.Recall.LiftChart 如何实现 目录 Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Pre ...
- ROC曲线、AUC、Precision、Recall、F-measure理解及Python实现
本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AU ...
- 准确率和召回率(precision&recall)
在机器学习.推荐系统.信息检索.自然语言处理.多媒体视觉等领域,常常会用到准确率(precision).召回率(recall).F-measure.F1-score 来评价算法的准确性. 一.准确率和 ...
- 一道关于 precision、recall 和 threshold关系的机器学习题
Suppose you have trained a logistic regression classifier which is outputing hθ(x). Currently, you p ...
- precision、recall、accuracy的概念
机器学习中涉及到几个关于错误的概念: precision:(精确度) precision = TP/(TP+FP) recall:(召回率) recall = TP/(TP+FN) accuracy: ...
- 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- 分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1
轉自 https://blog.csdn.net/sinat_28576553/article/details/80258619 四个基本概念TP.True Positive 真阳性:预测为正,实 ...
- ROC,AUC,Precision,Recall,F1的介绍与计算(转)
1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...
- ROC,AUC,Precision,Recall,F1的介绍与计算
1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...
随机推荐
- MATLAB生成正弦波
要求:选定采样频率,生成不同频率的正弦波 程序: f1=100;%生成正弦波的频率 fs=1000;%采样频率 N=100;%采样点数 n=0:N-1; t=n/fs;%时间序列 y=sin(2*pi ...
- 来吧,一文彻底搞懂Java中最特殊的存在——null
没事的时候,我并不喜欢逛 P 站,而喜欢逛 programcreek 这些技术型网站,于是那天晚上,在夜深人静的时候,我就发现了一个专注基础但不容忽视的主题.比如说:Java 中的 null 到底是什 ...
- js 日期增减
js 的 Date 对象提供了许多方法,可以获取日期的年.月.日等信息,也可以修改年.月.日 日期的增减可以使用setFullYear().setMonth().setDate() 等方法 exp: ...
- Java Linked集合的简单介绍和常用方法的使用
LinkedList的简单介绍 java.util.LinkedList 集合数据存储的结构是链表结构.LinkedList是一个双向链表在实际开发中,对一个集合元素的添加和删除,经常涉及到首尾操作, ...
- 2、Vue实战-配置篇-npm配置
引言: 如果刚开始使用 vue 并不了解 nodejs.npm 相关知识可以看我上一篇的实践,快速入门了解实战知识树. Vue实战-入门篇 上篇反思: 1.新的关注点:开发 vue 模板.如何使用本地 ...
- hdu - 4965
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- gradle 不用打开项目直接编译
gradlew :api-client:install 编辑完后点击
- Java入门 - 语言基础 - 06.变量类型
原文地址:http://www.work100.net/training/java-variable-type.html 更多教程:光束云 - 免费课程 变量类型 序号 文内章节 视频 1 概述 2 ...
- CTF实验吧——证明自己吧
题目地址:http://www.shiyanbar.com/ctf/28 没有壳 ,vc++ 写的 拖进OD观察观察,发现代码很短哟,先来看这俩个call 怀疑他们其中有正确的flag和我们输入的东西 ...
- 提供程序模式 提供 coding 一点点
放个图先,预则立码