Covering

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3078    Accepted Submission(s): 1117

Problem Description
Bob's school has a big playground, boys and girls always play games here after school.

To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.

Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.

He has infinite carpets with sizes of 1×2 and 2×1, and the size of the playground is 4×n.

Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping?

 
Input
There are no more than 5000 test cases.

Each test case only contains one positive integer n in a line.

1≤n≤1018

 
Output
For each test cases, output the answer mod 1000000007 in a line.
 
Sample Input
1
2
 
Sample Output
1 5

题意:4xn的地面,用1x2或者2x1的地毯自由组合铺满,有几种方案(答案mod 1e9+7)

解题思路:(草稿纸冲冲冲)

                

有了递推式,矩阵快速幂就好了

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define INF 0X3f3f3f3f
const ll MAXN = ;
const ll mod = 1e9 + ;
//矩阵的大小 模数
ll n;
struct MAT
{
ll mat[MAXN][MAXN];
MAT operator*(const MAT &a) const
{
//重载矩阵乘法
MAT b;
memset(b.mat, , sizeof(b.mat));
for (int i = ; i < MAXN; i++)
{
for (int j = ; j < MAXN; j++)
{
for (int k = ; k < MAXN; k++)
b.mat[i][j] = (b.mat[i][j] + mat[i][k] * a.mat[k][j]);
b.mat[i][j] += mod;
b.mat[i][j] %= mod;
}
}
return b;
}
} start, ans;
MAT Mqpow(MAT base, ll b)
{
MAT r;
memset(r.mat, , sizeof(r.mat));
r.mat[][] = , r.mat[][] = , r.mat[][] = , r.mat[][] = ;
//初始状态
while (b)
{
if (b & )
r = base * r;
base = base * base;
b >>= ;
}
return r;
}
int main()
{ start.mat[][] = , start.mat[][] = , start.mat[][] = , start.mat[][] = ;
start.mat[][] = , start.mat[][] = , start.mat[][] = , start.mat[][] = ;
start.mat[][] = , start.mat[][] = , start.mat[][] = , start.mat[][] = ;
start.mat[][] = -, start.mat[][] = , start.mat[][] = , start.mat[][] = ;
//建立转移矩阵
ll f[] = {, , , , };
while (~scanf("%lld", &n))
{
if (n <= )
printf("%lld\n", f[n] % mod);
else
printf("%lld\n", Mqpow(start, n - ).mat[][]);
}
return ;
}

HDU-6185-Covering(推递推式+矩阵快速幂)的更多相关文章

  1. HDU 2842 Chinese Rings( 递推关系式 + 矩阵快速幂 )

    链接:传送门 题意:解 N 连环最少步数 % 200907 思路:对于 N 连环来说,解 N 连环首先得先解 N-2 连环然后接着解第 N 个环,然后再将前面 N-2 个环放到棍子上,然后 N 连环问 ...

  2. HDU - 2604 Queuing(递推式+矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  4. HDU5950 Recursive sequence 非线性递推式 矩阵快速幂

    题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...

  5. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  6. hdu 5895 Mathematician QSC 指数循环节+矩阵快速幂

    Mathematician QSC Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  7. hdu 2604 Queuing dp找规律 然后矩阵快速幂。坑!!

    http://acm.hdu.edu.cn/showproblem.php?pid=2604 这题居然O(9 * L)的dp过不了,TLE,  更重要的是找出规律后,O(n)递推也过不了,TLE,一定 ...

  8. HDU 2276 Kiki & Little Kiki 2( 矩阵快速幂 + 循环同构矩阵 )

    蒟蒻的我还需深入学习 链接:传送门 题意:给出一个长度为 n,n 不超过100的 01 串 s ,每当一个数字左侧为 1 时( 0的左侧是 n-1 ),这个数字就会发生改变,整个串改变一次需要 1s ...

  9. HDU 1757 A Simple Math Problem(矩阵快速幂)

    题目链接 题意 :给你m和k, 让你求f(k)%m.如果k<10,f(k) = k,否则 f(k) = a0 * f(k-1) + a1 * f(k-2) + a2 * f(k-3) + …… ...

随机推荐

  1. Java程序员必备:异常的十个关键知识点

    前言 总结了Java异常十个关键知识点,面试或者工作中都有用哦,加油. 一. 异常是什么 异常是指阻止当前方法或作用域继续执行的问题.比如你读取的文件不存在,数组越界,进行除法时,除数为0等都会导致异 ...

  2. MyBatis使用mapper动态代理实现DAO接口

    工具: mysql 5.5.62   IDEA 参考自:https://www.cnblogs.com/best/p/5688040.html 遇到的问题: 无法读取src/main/java下配置文 ...

  3. lintcode入门37-算法实现

    lintcode入门级算法题37 一.题目 反转一个3位整数 反转一个只有3位数的整数. 样例          样例 1: 输入: number = 123 输出: 321         样例 2 ...

  4. DecoratorPattern(装饰器模式)-----Java/.Net

    装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装

  5. CodeIgniter框架多条件搜索查询分页功能解决方案

    最近在用ci框架写功能的时候,需要用到分页功能,本来寻常的数据结果分页是比较简单的,但是这次写的功能是多条件搜索查询分页,就有点难度了,看官方手册下面评论好多人问, 正常的分页功能例子是这样的: $t ...

  6. 软考网络工程师、软件设计师等官方指定教材pdf文件

    软考计算机网络工程师教材pdf 链接:https://pan.baidu.com/s/1-UXeNye414UWYxYRC6bHuA 提取码:5z9w 软考计算机软件设计师第五版pdf 链接:http ...

  7. kubelet--help-v1.15.4

    kubelet --help 官方文档   The kubelet is the primary "node agent" that runs on each node. It c ...

  8. RabbitMQ入门之Hello World

    RabbitMQ简介   在介绍RabbitMQ之前,我们需要了解一些最基础的概念,相信使用过或者听说过RabbitMQ的人都不会陌生,但笔者还是不厌其烦地在这里讲述,因为笔者的理念是self con ...

  9. C#实现DataTable转为Excel文件

    实现DataTable转为Excel文件,和上次分享的Excel文件转为DataTable互为反操作.DataTable转化为Excel文件是通过传入一个DataTable类型的参数,然后将传入的Da ...

  10. Could not find iPhone 6 simulator

    最近原来的老项目有点问题需要处理一下,运行启动命令,就报了如下错误,提示找不到iPhone 6 模拟器. react-native run-ios Owaiss-Mac:pdm owaisahmed$ ...