正解:容斥+$dp$

解题报告:

传送门$QwQ$

$umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多少种方案可以连成一张联通图

显然考虑容斥呗?设$f_i$表示状态为$i$的点连成联通图的合法方案,$g_i$表示状态为$i$的点随便连边的所有方案

显然$g_i$可以先预处理出来?就等于$\prod_{u,v\in i}a_{u,v}$.然后$f_i$就等于$g_i$减去不合法的数量.不合法数量显然就考虑枚举子集${i}'$,就等于$\sum f_{{i}'}\cdot g_{i-{i}'}$.

但是这样显然依然会有锅,即一个不合法方案会被枚举其包含的联通块次.为了保证不重不漏,就只用枚指定点的联通块大小,比较通常的做法就枚举最大/最小点的联通块大小,也就钦定${i}'$中包含了最大/最小的点

然后就做完了$QwQ$

$over$

因为一些不知名原因我本机$AC$,$BZOJ$上$WA$了(事实上是,$emacs\ AC$,$lemon\ WA$,$darkbzoj\ WA$,$QAQ$

但是我暂时懒得搞了先把代码放上来趴$kk$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lf double
#define int long long
#define ll long long
#define gc getchar()
#define ri register int
#define rc register char
#define rb register bool
#define lowbit(x) (x&(-x))
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define gdgs(i,x) for(ri i=x-lowbit(x);i;i-=lowbit(i)) const int N=,mod=;
int n,a[N][N],lg[<<N],tot,d[N],cnt;
ll g[<<N],f[<<N],re[N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
} signed main()
{
freopen("2560.in","r",stdin);freopen("2560.out","w",stdout);
n=read();rp(i,,n-)rp(j,,n-)a[i][j]=read();tot=(<<n)-;rp(i,,n-)lg[<<i]=i;g[]=;
rp(i,,tot)
{ll tmp=;gdgs(j,i)tmp=1ll*tmp*(a[lg[lowbit(i)]][lg[lowbit(j)]]+)%mod;g[i]=g[i-lowbit(i)]*tmp%mod;}
rp(i,,tot)
{
cnt=;gdgs(j,i)d[cnt++]=lowbit(j);
rp(j,,(<<cnt)-)re[j]=re[j-lowbit(j)]|d[lg[lowbit(j)]],f[i]=(f[i]+f[i^re[j]]*g[re[j]])%mod;
f[i]=(g[i]-f[i]+mod)%mod;
}
printf("%lld\n",f[tot]);
return ;
}

随机推荐

  1. Vue.js 第3章 axios&Vue过渡动画

    promise 它将我们从回调地狱中解脱出来 创建和使用 var fs = require('fs') // 创建promise // reslove表示执行成功后调用的回调函数 // reject表 ...

  2. mysql数据库之windows版本

    安装  第一步:打开网址,http://www.mysql.com.点击downloads之后跳转到http://www.mysql.com/downloads/选择Community选项 第二步:按 ...

  3. day7_python之面向对象高级-反射

    反射:通过字符串去找到真实的属性,然后去进行操作 python面向对象中的反射:通过字符串的形式操作对象相关的属性.python中的一切事物都是对象(都可以使用反射) 1.两种方法访问对象的属性 cl ...

  4. codeforces1249-div3

    A B C 等比数列的性质,前面的i项的和,不会超过第i+1项 D 有若干个区间,要求每一个点被区间覆盖的次数不能超过k个.问移除的最少的区间的数目. 贪心: 若某个点被覆盖了k次以上,那么肯定是移除 ...

  5. 微软产品开发文档:包括.net core .net vs等等

    Browse all https://docs.microsoft.com/en-us/learn/browse/?roles=developer&products=xamarin%2Cef- ...

  6. flowable笔记 - 简单的通用流程

    简介 通用流程可以用于一些基本的申请,例如请假.加班. 大致过程是: 1. 创建申请 2. 分配给审批人(需要审批人列表,当前审批人) -> 有下一个审批人 -> 3 -> 无 -& ...

  7. [转][ASP.NET Core 3框架揭秘] 跨平台开发体验: Windows [中篇]

    我们在<上篇>利用dotnet new命令创建了一个简单的控制台程序,接下来我们将它改造成一个ASP.NET Core应用.一个ASP.NET Core应用构建在ASP.NET Core框 ...

  8. Lifecycle mapping "org.eclipse.m2e.jdt.JarLifecycleMapping" Eclipse Maven报错

    eclipse 项目中报错Lifecycle mapping "org.eclipse.m2e.jdt.JarLifecycleMapping" is not available, ...

  9. 浅谈集合框架二 List、Set常用方法

    最近刚学完集合框架,想把自己的一些学习笔记与想法整理一下,所以本篇博客或许会有一些内容写的不严谨或者不正确,还请大神指出.初学者对于本篇博客只建议作为参考,欢迎留言共同学习. 之前有介绍集合框架的体系 ...

  10. Python--day32--ftp文件传输报错的原因

    解决办法:把buffer改小 server.py #实现一个大文件的上传或下载 #配置文件 ip地址 端口号 import json import socket import struct sk = ...