正解:容斥+$dp$

解题报告:

传送门$QwQ$

$umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多少种方案可以连成一张联通图

显然考虑容斥呗?设$f_i$表示状态为$i$的点连成联通图的合法方案,$g_i$表示状态为$i$的点随便连边的所有方案

显然$g_i$可以先预处理出来?就等于$\prod_{u,v\in i}a_{u,v}$.然后$f_i$就等于$g_i$减去不合法的数量.不合法数量显然就考虑枚举子集${i}'$,就等于$\sum f_{{i}'}\cdot g_{i-{i}'}$.

但是这样显然依然会有锅,即一个不合法方案会被枚举其包含的联通块次.为了保证不重不漏,就只用枚指定点的联通块大小,比较通常的做法就枚举最大/最小点的联通块大小,也就钦定${i}'$中包含了最大/最小的点

然后就做完了$QwQ$

$over$

因为一些不知名原因我本机$AC$,$BZOJ$上$WA$了(事实上是,$emacs\ AC$,$lemon\ WA$,$darkbzoj\ WA$,$QAQ$

但是我暂时懒得搞了先把代码放上来趴$kk$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lf double
#define int long long
#define ll long long
#define gc getchar()
#define ri register int
#define rc register char
#define rb register bool
#define lowbit(x) (x&(-x))
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define gdgs(i,x) for(ri i=x-lowbit(x);i;i-=lowbit(i)) const int N=,mod=;
int n,a[N][N],lg[<<N],tot,d[N],cnt;
ll g[<<N],f[<<N],re[N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
} signed main()
{
freopen("2560.in","r",stdin);freopen("2560.out","w",stdout);
n=read();rp(i,,n-)rp(j,,n-)a[i][j]=read();tot=(<<n)-;rp(i,,n-)lg[<<i]=i;g[]=;
rp(i,,tot)
{ll tmp=;gdgs(j,i)tmp=1ll*tmp*(a[lg[lowbit(i)]][lg[lowbit(j)]]+)%mod;g[i]=g[i-lowbit(i)]*tmp%mod;}
rp(i,,tot)
{
cnt=;gdgs(j,i)d[cnt++]=lowbit(j);
rp(j,,(<<cnt)-)re[j]=re[j-lowbit(j)]|d[lg[lowbit(j)]],f[i]=(f[i]+f[i^re[j]]*g[re[j]])%mod;
f[i]=(g[i]-f[i]+mod)%mod;
}
printf("%lld\n",f[tot]);
return ;
}

随机推荐

  1. 在 windows 安装 Jekyll

    本文告诉大家一个简单的方法在 Windows 安装 Jekyll 下载 ps1 文件 首先需要安装 Chocolatey ,这个工具可以快速安装 Jekyll 先下载Chocolatey,如果无法从这 ...

  2. AtCoder Beginner Contest 077 D Small Multiple(最短路)

    水过前三道题之后,一直在写这个题,做不对.总有那么几组数据过不去... 看了看题解是最短路,这思路感觉很神奇.看了下唯一做出来这题的那人的代码,是搜索做的. 标程: 对每个数字x,向x+1建一条花费为 ...

  3. shell去掉最后一个字符

    实测过第一种写法,可正常删除 sed 's/.$//' awk '{sub(/.$/,"")}1' awk '{printf $0"\b \n"}' ufile ...

  4. MyBatis-使用XML或注解的简单实例

    一.导入jar包 <dependency> <groupId>junit</groupId> <artifactId>junit</artifac ...

  5. Android中使用lambda表达式

    lambda 语法简介 视频为本篇播客知识点讲解,建议采用超清模式观看, 欢迎点击订阅我的优酷 如果刚学Android,不知道怎么写点击事件可以跳转,传送门 要想在Android中使用lambda语法 ...

  6. Android Studio(七):项目从Eclipse到Android Studio迁移

    Android Studio相关博客: Android Studio(一):介绍.安装.配置 Android Studio(二):快捷键设置.插件安装 Android Studio(三):设置Andr ...

  7. Ext--Layout(布局)

    EXT中的布局,常用的有border.column.fit.form.tabel这几种. Fit布局,子元素将自动填满整个父容器(对元素设置宽度无效),如果容器组件中有多个子元素,则只会显示第一个子元 ...

  8. Pytorch学习记录-torchtext和Pytorch的实例( 使用神经网络训练Seq2Seq代码)

    Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预 ...

  9. Python--day31--TCP的长链接

  10. Vue v-if和v-show的使用.区别

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...