In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

Sample Output 1:

2 4 4 4 4 4 2
Eulerian

Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

Sample Output 2:

2 4 4 4 3 3
Semi-Eulerian

Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

Sample Output 3:

3 3 4 3 3
Non-Eulerian
题⽬⼤意:如果⼀个连通图的所有结点的度都是偶数,那么它就是Eulerian,如果除了两个结点的度是
奇数其他都是偶数,那么它就是Semi-Eulerian,否则就是Non-Eulerian~
分析:⽤邻接表存储图,判断每个结点的度【也就是每个结点i的v[i].size()】是多少即可得到最终结果
~注意:图必须是连通图,所以要⽤⼀个深搜判断⼀下连通性,从结点1开始深搜,如果最后发现统计
的连通结点个数cnt != n说明是不是连通图,要输出Non-Eulerian~
 #include <iostream>
using namespace std;
int path[] = { }, graph[][];
int n, m, a, b, odd = , num = ;
bool visit[] = { false };
void DFS(int s)
{
visit[s] = true;
num++;
for (int i = ; i <= n; ++i)
if (graph[s][i] == && visit[i] == false)
DFS(i);
}
int main()
{
cin >> n >> m;
while (m--)
{
cin >> a >> b;
path[a]++;
path[b]++;
graph[a][b] = graph[b][a] = ;
}
for (int i = ; i <= n; ++i)
{
if (path[i] % == )
odd++;
cout << (i == ? "" : " ") << path[i];
}
DFS();//判断是不是连通图
if (num == n && odd == )
cout << endl << "Eulerian" << endl;
else if (num == n && odd == )
cout << endl << "Semi-Eulerian" << endl;
else
cout << endl << "Non-Eulerian" << endl;
return ;
}

PAT甲级——A1126 Eulerian Path【30】的更多相关文章

  1. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  2. PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...

  3. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  4. 【刷题-PAT】A1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  5. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  6. A1126. Eulerian Path

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  7. 【PAT甲级】1053 Path of Equal Weight (30 分)(DFS)

    题意: 输入三个正整数N,M,S(N<=100,M<N,S<=2^30)分别代表数的结点个数,非叶子结点个数和需要查询的值,接下来输入N个正整数(<1000)代表每个结点的权重 ...

  8. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  9. PAT甲级——A1155 HeapPaths【30】

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

随机推荐

  1. java内省Introspector

    大纲: JavaBean 规范 内省 一.JavaBean 规范 JavaBean —般需遵循以下规范. 实现 java.io.Serializable 接口. javaBean属性是具有getter ...

  2. Change myself to be better

    发现和改变自己不好的习惯 遇到问题的反应 自己遇到问题的时候,特别是不熟悉的问题的时候就会有点焦虑,这个应该是每个人都会有的,遇到自己不熟悉的或者是没有经历过的东西都会 感觉不舒服,或者是遇到难题或者 ...

  3. QueryList 来做采集是什么样子

    采集百度搜索结果列表的标题和链接. $data = QueryList::get('https://www.baidu.com/s?wd=QueryList') // 设置采集规则 ->rule ...

  4. NX二次开发-UFUN获取图层类别的信息UF_LAYER_ask_category_info

    1 NX11+VS2013 2 3 #include <uf.h> 4 #include <uf_ui.h> 5 #include <uf_layer.h> 6 7 ...

  5. python从入门到大神---3、浮光掠影python3语法

    python从入门到大神---3.浮光掠影python3语法 一.总结 一句话总结: 语法不必一次记全部,效率太差,用哪部分内容,就把那部分内容全部记下来 1.python3中单引号和双引号的区别是什 ...

  6. pycharm 使用心得(一)安装和首次使用

    PyCharm 是我用过的python编辑器中,比较顺手的一个.而且可以跨平台,在macos和windows下面都可以用,这点比较好. 首先预览一下 PyCharm 在实际应用中的界面:(更改了PyC ...

  7. python round, ceil, flooor

    round(num, n) 保留n位小数 round(80.23456, 2) : 80.23 round(100.000056, 3) : 100.0 round(-100.000056, 3) : ...

  8. webstorm快捷键、支持vue文件等部分使用技巧

    转载:https://www.cnblogs.com/seven077/p/9771474.html 1.常用快捷键 shift+↑ 向上选取代码块shift+↓ 向下选取代码块ctrl+/ 注释/取 ...

  9. scala实现读取Oracle数据

    用scala实现读取oracle数据 增加oralce的jar包后 package cn.bigdata.scala.oracle import java.sql.{DriverManager, Co ...

  10. 【POJ】2236 Wireless Network

    题目链接:http://poj.org/problem?id=2236 题意:给你n台计算机的坐标.d是可通信的最大距离.有两个操作. 1.O p 表示修复计算机p. 2.S p q表示询问pq是否能 ...