In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

Sample Output 1:

2 4 4 4 4 4 2
Eulerian

Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

Sample Output 2:

2 4 4 4 3 3
Semi-Eulerian

Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

Sample Output 3:

3 3 4 3 3
Non-Eulerian
题⽬⼤意:如果⼀个连通图的所有结点的度都是偶数,那么它就是Eulerian,如果除了两个结点的度是
奇数其他都是偶数,那么它就是Semi-Eulerian,否则就是Non-Eulerian~
分析:⽤邻接表存储图,判断每个结点的度【也就是每个结点i的v[i].size()】是多少即可得到最终结果
~注意:图必须是连通图,所以要⽤⼀个深搜判断⼀下连通性,从结点1开始深搜,如果最后发现统计
的连通结点个数cnt != n说明是不是连通图,要输出Non-Eulerian~
 #include <iostream>
using namespace std;
int path[] = { }, graph[][];
int n, m, a, b, odd = , num = ;
bool visit[] = { false };
void DFS(int s)
{
visit[s] = true;
num++;
for (int i = ; i <= n; ++i)
if (graph[s][i] == && visit[i] == false)
DFS(i);
}
int main()
{
cin >> n >> m;
while (m--)
{
cin >> a >> b;
path[a]++;
path[b]++;
graph[a][b] = graph[b][a] = ;
}
for (int i = ; i <= n; ++i)
{
if (path[i] % == )
odd++;
cout << (i == ? "" : " ") << path[i];
}
DFS();//判断是不是连通图
if (num == n && odd == )
cout << endl << "Eulerian" << endl;
else if (num == n && odd == )
cout << endl << "Semi-Eulerian" << endl;
else
cout << endl << "Non-Eulerian" << endl;
return ;
}

PAT甲级——A1126 Eulerian Path【30】的更多相关文章

  1. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  2. PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...

  3. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  4. 【刷题-PAT】A1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  5. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  6. A1126. Eulerian Path

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  7. 【PAT甲级】1053 Path of Equal Weight (30 分)(DFS)

    题意: 输入三个正整数N,M,S(N<=100,M<N,S<=2^30)分别代表数的结点个数,非叶子结点个数和需要查询的值,接下来输入N个正整数(<1000)代表每个结点的权重 ...

  8. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  9. PAT甲级——A1155 HeapPaths【30】

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

随机推荐

  1. Vuejs input 和 textarea 元素中使用 v-model 实现双向数据绑定

    demo <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...

  2. leetcood学习笔记-88-合并两个有序数组

    题目描述: 第一次提交: class Solution: def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -&g ...

  3. 获取ThinkPHP

    获取ThinkPHP的方式很多,官方网站(http://thinkphp.cn)是最好的下载和文档获取来源. 官网提供了稳定版本的下载:http://thinkphp.cn/down/framewor ...

  4. NX二次开发-UFUN参数选择对话框UF_UI_select_parameters

    #include <uf.h> #include <uf_ui.h> #include <uf_modl.h> UF_initialize(); //参数选择对话框 ...

  5. NX二次开发-删除经典工具栏UF_UI_remove_toolbar

    NX9+VS2012 1.打开D:\Program Files\Siemens\NX 9.0\UGII\menus\ug_main.men 找到装配和PMI,在中间加上一段 TOGGLE_BUTTON ...

  6. Unity3D中的线程与协程

    线程 Unity3D是以生命周期主线程循环进行游戏开发. Unity3D中的子线程无法运行Unity SDK(开发者工具包,软件包.软件框架)跟API(应用程序编程接口,函数库). 限制原因:大多数游 ...

  7. Mybatis笔记 – Po映射类型

    一.输入映射类型 parameterType定义输入到sql中的映射类型,可以是  简单类型  .po类对象(可自动生成 或 手动定义). pojo包装对象(用于综合查询,UserCustom用户自定 ...

  8. scala实现读取Oracle数据

    用scala实现读取oracle数据 增加oralce的jar包后 package cn.bigdata.scala.oracle import java.sql.{DriverManager, Co ...

  9. Crane /// 向量旋转+线段树

    题目大意: 给定n条首尾相接的线段的长度 第一条从0,0开始,所有线段垂直与x轴向上延伸 给定c次操作 每次操作给定 s,a 使得 由第s条线段的角度 逆时针旋转a后 达到第s+1条线段的角度 每次操 ...

  10. 关于RSA加密和签名的区别与联系

    发现网上对于RSA加密和签名的介绍普遍偏向于使用和概念的说明,今天想说一点不一样的.对于加解密和签名的使用及概念就不再说了,不知道的请自行百度. 签名的本质其实就是加密,但是由于签名无需还原成明文,因 ...