In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

Sample Output 1:

2 4 4 4 4 4 2
Eulerian

Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

Sample Output 2:

2 4 4 4 3 3
Semi-Eulerian

Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

Sample Output 3:

3 3 4 3 3
Non-Eulerian
题⽬⼤意:如果⼀个连通图的所有结点的度都是偶数,那么它就是Eulerian,如果除了两个结点的度是
奇数其他都是偶数,那么它就是Semi-Eulerian,否则就是Non-Eulerian~
分析:⽤邻接表存储图,判断每个结点的度【也就是每个结点i的v[i].size()】是多少即可得到最终结果
~注意:图必须是连通图,所以要⽤⼀个深搜判断⼀下连通性,从结点1开始深搜,如果最后发现统计
的连通结点个数cnt != n说明是不是连通图,要输出Non-Eulerian~
 #include <iostream>
using namespace std;
int path[] = { }, graph[][];
int n, m, a, b, odd = , num = ;
bool visit[] = { false };
void DFS(int s)
{
visit[s] = true;
num++;
for (int i = ; i <= n; ++i)
if (graph[s][i] == && visit[i] == false)
DFS(i);
}
int main()
{
cin >> n >> m;
while (m--)
{
cin >> a >> b;
path[a]++;
path[b]++;
graph[a][b] = graph[b][a] = ;
}
for (int i = ; i <= n; ++i)
{
if (path[i] % == )
odd++;
cout << (i == ? "" : " ") << path[i];
}
DFS();//判断是不是连通图
if (num == n && odd == )
cout << endl << "Eulerian" << endl;
else if (num == n && odd == )
cout << endl << "Semi-Eulerian" << endl;
else
cout << endl << "Non-Eulerian" << endl;
return ;
}

PAT甲级——A1126 Eulerian Path【30】的更多相关文章

  1. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  2. PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...

  3. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  4. 【刷题-PAT】A1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  5. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  6. A1126. Eulerian Path

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  7. 【PAT甲级】1053 Path of Equal Weight (30 分)(DFS)

    题意: 输入三个正整数N,M,S(N<=100,M<N,S<=2^30)分别代表数的结点个数,非叶子结点个数和需要查询的值,接下来输入N个正整数(<1000)代表每个结点的权重 ...

  8. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  9. PAT甲级——A1155 HeapPaths【30】

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

随机推荐

  1. Java HashSet和ArrayList的查找Contains()时间复杂度

    今天在刷leetCode时,碰到了一个题是这样的. 给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 看到 ...

  2. EF批量添加

    1.首先,打开工具——NuGet包管理器——管理解决方案的NoGet程序包——搜索Z.EntityFramework.Extensions 点击安装!!! codefirst定义一个实体,用EF的方法 ...

  3. 官网下载 Linux 上需要的 MySQL的步骤

    1.输入MySQL 官网地址  https://dev.mysql.com/  选择 download ->Community->MySQL Community Server 点击 MyS ...

  4. C++的指针常量和常量指针

    这2个概念非常容易混淆,即使是老鸟,也有眩晕的时候,写此博文,加深记忆... 指针常量:一个指针,并且它是一个常量,它的值不许被改变: char *const p1 = "Hello!&qu ...

  5. ajax 接收json数据的进一步了解

    var url = "../searchclasses"; $.ajax({ url: url, type: "post", dataType: "j ...

  6. python读取Excel表格文件

    python读取Excel表格文件,例如获取这个文件的数据 python读取Excel表格文件,需要如下步骤: 1.安装Excel读取数据的库-----xlrd 直接pip install xlrd安 ...

  7. 【洛谷】P1962

    题目链接:https://www.luogu.org/problemnew/show/P1962 题意:求fib数列的第n项,很大.mod 1e9+7. 题解:BM直接推. 代码: #include ...

  8. Nginx常用功能配置一

    Nginx常用功能配置 参数include配置 说明:如果日常工作中server标签存在太多,可以采用include配置模式,Nginx的主配置文件包含的所有虚拟主机的子配置文件会统一放入extra目 ...

  9. 免费的高分辨率图库——re:splashed 可用做网页背景、设计或桌面壁纸

    想找高清图片用作网站背景.设计或桌面壁纸?可以去re:splashed看看.re:splashed 是一个提供免费高分辨率HD图片的网站,有多种分类标签,查找很方便,无需注册和登陆便可下载. 网站名称 ...

  10. Dribbble 流行的配色风格是什么?

    Dribbble 是众所周知的设计社群网站,在网站中有许多人分享设计作品,互相交流或从其他设计获取灵感.当然也有不少网站应运而生,例如 Freebbble 可免费下载 Dribbble 数千种设计素材 ...