###仅为自己练习,没有其他用途

  1 import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import numpy as np # torch.manual_seed(1) # reproducible # Hyper Parameters
EPOCH = 10
BATCH_SIZE = 64
LR = 0.005 # learning rate
DOWNLOAD_MNIST = False
N_TEST_IMG = 5 # Mnist digits dataset
train_data = torchvision.datasets.MNIST(
root='./mnist/',
train=True, # this is training data
transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
download=DOWNLOAD_MNIST, # download it if you don't have it
) # plot one example
print(train_data.train_data.size()) # (60000, 28, 28)
print(train_data.train_labels.size()) # (60000)
plt.imshow(train_data.train_data[2].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[2])
plt.show() # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__() self.encoder = nn.Sequential(
nn.Linear(28*28, 128),
nn.Tanh(),
nn.Linear(128, 64),
nn.Tanh(),
nn.Linear(64, 12),
nn.Tanh(),
nn.Linear(12, 3), # compress to 3 features which can be visualized in plt
)
self.decoder = nn.Sequential(
nn.Linear(3, 12),
nn.Tanh(),
nn.Linear(12, 64),
nn.Tanh(),
nn.Linear(64, 128),
nn.Tanh(),
nn.Linear(128, 28*28),
nn.Sigmoid(), # compress to a range (0, 1)
) def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return encoded, decoded autoencoder = AutoEncoder() optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
loss_func = nn.MSELoss() # initialize figure
f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
plt.ion() # continuously plot # original data (first row) for viewing
view_data = train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
for i in range(N_TEST_IMG):
a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(()) for epoch in range(EPOCH):
for step, (x, b_label) in enumerate(train_loader):
b_x = x.view(-1, 28*28) # batch x, shape (batch, 28*28)
b_y = x.view(-1, 28*28) # batch y, shape (batch, 28*28) encoded, decoded = autoencoder(b_x) loss = loss_func(decoded, b_y) # mean square error
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients if step % 100 == 0:
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy()) # plotting decoded image (second row)
_, decoded_data = autoencoder(view_data)
for i in range(N_TEST_IMG):
a[1][i].clear()
a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
a[1][i].set_xticks(()); a[1][i].set_yticks(())
plt.draw(); plt.pause(0.05) plt.ioff()
plt.show() # visualize in 3D plot
view_data = train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
encoded_data, _ = autoencoder(view_data)
fig = plt.figure(2); ax = Axes3D(fig)
X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
values = train_data.train_labels[:200].numpy()
for x, y, z, s in zip(X, Y, Z, values):
c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())
plt.show()

pytoch之 encoder,decoder的更多相关文章

  1. 自定义Encoder/Decoder进行对象传递

    转载:http://blog.csdn.net/top_code/article/details/50901623 在上一篇文章中,我们使用Netty4本身自带的ObjectDecoder,Objec ...

  2. 比sun.misc.Encoder()/Decoder()的base64更高效的mxBase64算法

    package com.mxgraph.online; import java.util.Arrays; /** A very fast and memory efficient class to e ...

  3. Netty自定义Encoder/Decoder进行对象传递

    转载:http://blog.csdn.net/top_code/article/details/50901623 在上一篇文章中,我们使用Netty4本身自带的ObjectDecoder,Objec ...

  4. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

    1.主要完成的任务是能够将英文转译为法文,使用了一个encoder-decoder模型,在encoder的RNN模型中是将序列转化为一个向量.在decoder中是将向量转化为输出序列,使用encode ...

  5. Transformer模型---encoder

    一.简介 论文链接:<Attention is all you need> 由google团队在2017年发表于NIPS,Transformer 是一种新的.基于 attention 机制 ...

  6. pytorch-- Attention Mechanism

    1. paper: Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translat ...

  7. JavaScript资源大全中文版(Awesome最新版)

    Awesome系列的JavaScript资源整理.awesome-javascript是sorrycc发起维护的 JS 资源列表,内容包括:包管理器.加载器.测试框架.运行器.QA.MVC框架和库.模 ...

  8. Java DNS查询内部实现

    源码分析 在Java中,DNS相关的操作都是通过通过InetAddress提供的API实现的.比如查询域名对应的IP地址: String dottedQuadIpAddress = InetAddre ...

  9. helios架构详解(一)服务器端架构

    看了“菜鸟耕地”的”.NET开源高性能Socket通信中间件Helios介绍及演示“,觉得这个东西不错.但是由于没有网络编程知识,所以高性能部分我就讲不出来了,主要是想根据开源代码跟大家分享下Heli ...

随机推荐

  1. C#调用7z实现文件的压缩与解压

    1.关于7z 首先在这里先介绍一下7z压缩软件,7z是一种主流的 压缩格式,它拥有极高的压缩比.在计算机科学中,7z是一种可以使用多种压缩算法进行数据压缩的档案格式.主要有以下特点: 来源且模块化的组 ...

  2. cogs 3008. 朋友圈

    3008. 朋友圈 ★★   输入文件:friendscircle.in   输出文件:friendscircle.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] NO ...

  3. 幽灵java进程引起的: FATAL ERROR in native method

    FATAL ERROR in native method: JDWP No transports initialized, jvmtiError=AGENT_ERROR_TRANSPORT_INIT( ...

  4. 分布式唯一ID的生成方案

    分布式ID的特性 全局唯一 不能出现重复的ID,这是最基本的要求. 递增 有利于关系数据库索引性能. 高可用 既然是服务于分布式系统,为多个服务提供ID服务,访问压力一定很大,所以需要保证高可用. 信 ...

  5. 解决android sdk无法更新 更新慢的问题

    使用不同平台开发android应用的时候都要先搭建开发环境. 这里介绍一下搭建开发环境过程中更新和下载android sdk的一种方法: 第一步:配置android sdk manager的代理服务, ...

  6. [bzoj4827] [洛谷P3723] [Hnoi2017] 礼物

    Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是 ...

  7. [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格

    Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...

  8. prometheus和zabbix的对比

    前言: 新公司要上监控,面试提到了Prometheus 是公司需要的监控解决方案,作为喜新厌旧的程序员,我当然是选择跟风了,之前主要做的是zabbix,既然公司需要prometheus,那没办法,只能 ...

  9. Hystrix 监控数据聚合 Turbine【Finchley 版】

    原文地址:https://windmt.com/2018/04/17/spring-cloud-6-turbine/ 上一篇我们介绍了使用 Hystrix Dashboard 来展示 Hystrix ...

  10. azure 第一弹