.

Pillars

There are n pillars aligned in a row and numbered from 1 to n.

Initially each pillar contains exactly one disk. The i-th pillar contains a disk having radius ai.

You can move these disks from one pillar to another. You can take a disk from pillar i and place it on top of pillar j if all these conditions are met:

there is no other pillar between pillars i and j. Formally, it means that |i−j|=1;
pillar i contains exactly one disk;
either pillar j contains no disks, or the topmost disk on pillar j has radius strictly greater than the radius of the disk you move.
When you place a disk on a pillar that already has some disks on it, you put the new disk on top of previously placed disks, so the new disk will be used to check the third condition if you try to place another disk on the same pillar.

You may take any disk and place it on other pillar any number of times, provided that every time you do it, all three aforementioned conditions are met. Now you wonder, is it possible to place all n disks on the same pillar simultaneously?

Input
The first line contains one integer n (3≤n≤2⋅105) — the number of pillars.

The second line contains n integers a1, a2, …, ai (1≤ai≤n), where ai is the radius of the disk initially placed on the i-th pillar. All numbers ai are distinct.

Output
Print YES if it is possible to place all the disks on the same pillar simultaneously, and NO otherwise. You may print each letter in any case (YES, yes, Yes will all be recognized as positive answer, NO, no and nO will all be recognized as negative answer).

Examples
inputCopy
4
1 3 4 2
outputCopy
YES
inputCopy
3
3 1 2
outputCopy
NO
Note
In the first case it is possible to place all disks on pillar 3 using the following sequence of actions:

take the disk with radius 3 from pillar 2 and place it on top of pillar 3;
take the disk with radius 1 from pillar 1 and place it on top of pillar 2;
take the disk with radius 2 from pillar 4 and place it on top of pillar 3;
take the disk with radius 1 from pillar 2 and place it on top of pillar 3.

**思路:看三个条件,翻译过来就是:找到最大值,从最大值向两侧递减,(每两个相邻的数进行比较)这道题目就解决了,不需要考虑的太复杂

 #include <iostream>
#include <algorithm>

using namespace std;
;
int main()
{
    int x[maxn],i,n;
    cin >> n;
    ;i<n;i++)
        cin >> x[i];
    ;
    ;i<n;i++)
    {
        if(x[m]<x[i])
        {
            m=i;
        }
    }
    ;
    ;i++)
    {
        ])
        {
            flag=;
            break;
        }
    }
    ;i--)
    {
        ]>x[i])
        {
            flag=;
            break;
        }
    }
    ) cout << "NO" <<endl;
    else cout << "YES" <<endl;
    ;
}

CF-----Pillars的更多相关文章

  1. [CF 474E] Pillars (线段树+dp)

    题目链接:http://codeforces.com/contest/474/problem/F 意思是给你两个数n和d,下面给你n座山的高度. 一个人任意选择一座山作为起始点,向右跳,但是只能跳到高 ...

  2. 【CF】474E Pillars

    H的范围是10^15,DP方程很容易想到.但是因为H的范围太大了,而n的范围还算可以接受.因此,对高度排序排重后.使用新的索引建立线段树,使用线段树查询当前高度区间内的最大值,以及该最大值的前趋索引. ...

  3. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  6. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  7. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  8. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  9. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

  10. CF #376 (Div. 2) C. dfs

    1.CF #376 (Div. 2)    C. Socks       dfs 2.题意:给袜子上色,使n天左右脚袜子都同样颜色. 3.总结:一开始用链表存图,一直TLE test 6 (1)如果需 ...

随机推荐

  1. 记录 shell学习过程(8)函数

    start () { echo "Apache start ...... [OK]" #return 0 可以写一个返回值,比如执行成功返回 0 } stop () { echo ...

  2. json_encode中文不转义问题

    //php5.3之后才有这个参数,这样存入数据库中的中文json数据就不会转义,也能被正确解析1JSON_UNESCAPED_UNICODE(中文不转为unicode ,对应的数字 256) JSON ...

  3. python3爬取百度知道的问答并存入数据库(MySQL)

    一.链接分析: 以"Linux"为搜索的关键字为例: 首页的链接为:https://zhidao.baidu.com/search?lm=0&rn=10&pn=0& ...

  4. crontab实践

    1.crontab概要 2.crontab使用 3.关键配置信息 3.1如何配置定时任务 4.注意事项 参考 https://www.cnblogs.com/keithtt/p/6946498.htm ...

  5. selenium参数化-ddt模块

    DDT介绍: DDT(数据驱动测试)允许您通过使用不同的测试数据运行一个测试用例来使其倍增,并使它显示为多个测试用例.要使用DDT需要安装,安装命令:pip install ddt 使用方法: dd. ...

  6. NIO-BufferAPI

    一 核心要素 capacity (容量):不能为负,不可更改:就是buffer的长度(buffer.length) limit (限制):指第一个不可被读入缓冲区元素的位置:不可为负,若positio ...

  7. linux备忘命令

    1,安装vim以后把vim中的tab键设置为4个空格 vim ~/.vimrc一下,如果没有会创建新的, 然后添加下面两行: set ts=4 set expandtab 如果第二行内容是noexpa ...

  8. 对C#面向对象三大特性的一点总结

    一.三大特性 封装: 把客观事物封装成类,并把类内部的实现隐藏,以保证数据的完整性 继承:通过继承可以复用父类的代码 多态:允许将子对象赋值给父对象的一种能力 二.[封装]特性 把类内部的数据隐藏,不 ...

  9. MyBatis(8)——联表多对一的处理

    xml说明: <!--column不做限制,可以为任意表的字段,而property须为type 定义的pojo属性--> <resultMap id="唯一的标识" ...

  10. PyCharm中的django项目的引入

    1.从github或者从本地的文件打开项目 2.项目引入后,python manage.py runserver 8080启动 1.启动的时候有错误,看看要引入的模块错误,然后把模块引入 D:\.St ...