对标Eureka的AP一致性,Nacos如何实现Raft算法
一、快速了解Raft算法
Raft 适用于一个管理日志一致性的协议,相比于 Paxos 协议 Raft 更易于理解和去实现它。
为了提高理解性,Raft 将一致性算法分为了几个部分,包括领导选取(leader selection)、日志复制(log replication)、安全(safety),并且使用了更强的一致性来减少了必须需要考虑的状态。
相比Paxos,Raft算法理解起来更加直观。
Raft算法将Server划分为3种状态,或者也可以称作角色:
Leader
负责Client交互和log复制,同一时刻系统中最多存在1个。Follower
被动响应请求RPC,从不主动发起请求RPC。Candidate
一种临时的角色,只存在于leader的选举阶段,某个节点想要变成leader,那么就发起投票请求,同时自己变成candidate。如果选举成功,则变为candidate,否则退回为follower
状态或者说角色的流转如下:

在Raft中,问题分解为:领导选取、日志复制、安全和成员变化。
复制状态机通过复制日志来实现:
日志:每台机器保存一份日志,日志来自于客户端的请求,包含一系列的命令
状态机:状态机会按顺序执行这些命令
一致性模型:分布式环境下,保证多机的日志是一致的,这样回放到状态机中的状态是一致的
Raft算法选主流程
Raft中有Term的概念,Term类比中国历史上的朝代更替,Raft 算法将时间划分成为任意不同长度的任期(term)。

选举流程
1、follower增加当前的term,转变为candidate。
2、candidate投票给自己,并发送RequestVote RPC给集群中的其他服务器。
3、收到RequestVote的服务器,在同一term中只会按照先到先得投票给至多一个candidate。且只会投票给log至少和自身一样新的candidate。
关于Raft更详细的描述,可以查看这里,从分布式一致性到共识机制(二)Raft算法
二、Nacos中的CP一致性
Spring Cloud Alibaba Nacos 在 1.0.0 正式支持 AP 和 CP 两种一致性协议,其中的CP一致性协议实现,是基于简化的 Raft 的 CP 一致性。
如何实现Raft算法
Nacos server在启动时,会通过RunningConfig.onApplicationEvent()方法调用RaftCore.init()方法。
启动选举
public static void init() throws Exception {
Loggers.RAFT.info("initializing Raft sub-system");
// 启动Notifier,轮询Datums,通知RaftListener
executor.submit(notifier);
// 获取Raft集群节点,更新到PeerSet中
peers.add(NamingProxy.getServers());
long start = System.currentTimeMillis();
// 从磁盘加载Datum和term数据进行数据恢复
RaftStore.load();
Loggers.RAFT.info("cache loaded, peer count: {}, datum count: {}, current term: {}",
peers.size(), datums.size(), peers.getTerm());
while (true) {
if (notifier.tasks.size() <= 0) {
break;
}
Thread.sleep(1000L);
System.out.println(notifier.tasks.size());
}
Loggers.RAFT.info("finish to load data from disk, cost: {} ms.", (System.currentTimeMillis() - start));
GlobalExecutor.register(new MasterElection()); // Leader选举
GlobalExecutor.register1(new HeartBeat()); // Raft心跳
GlobalExecutor.register(new AddressServerUpdater(), GlobalExecutor.ADDRESS_SERVER_UPDATE_INTERVAL_MS);
if (peers.size() > 0) {
if (lock.tryLock(INIT_LOCK_TIME_SECONDS, TimeUnit.SECONDS)) {
initialized = true;
lock.unlock();
}
} else {
throw new Exception("peers is empty.");
}
Loggers.RAFT.info("timer started: leader timeout ms: {}, heart-beat timeout ms: {}",
GlobalExecutor.LEADER_TIMEOUT_MS, GlobalExecutor.HEARTBEAT_INTERVAL_MS);
}
在init方法主要做了如下几件事:
- 获取Raft集群节点 peers.add(NamingProxy.getServers());
- Raft集群数据恢复 RaftStore.load();
- Raft选举 GlobalExecutor.register(new MasterElection());
- Raft心跳 GlobalExecutor.register(new HeartBeat());
- Raft发布内容
- Raft保证内容一致性
选举流程
其中,raft集群内部节点间是通过暴露的Restful接口,代码在 RaftController 中。
RaftController控制器是raft集群内部节点间通信使用的,具体的信息如下
POST HTTP://{ip:port}/v1/ns/raft/vote : 进行投票请求
POST HTTP://{ip:port}/v1/ns/raft/beat : Leader向Follower发送心跳信息
GET HTTP://{ip:port}/v1/ns/raft/peer : 获取该节点的RaftPeer信息
PUT HTTP://{ip:port}/v1/ns/raft/datum/reload : 重新加载某日志信息
POST HTTP://{ip:port}/v1/ns/raft/datum : Leader接收传来的数据并存入
DELETE HTTP://{ip:port}/v1/ns/raft/datum : Leader接收传来的数据删除操作
GET HTTP://{ip:port}/v1/ns/raft/datum : 获取该节点存储的数据信息
GET HTTP://{ip:port}/v1/ns/raft/state : 获取该节点的状态信息{UP or DOWN}
POST HTTP://{ip:port}/v1/ns/raft/datum/commit : Follower节点接收Leader传来得到数据存入操作
DELETE HTTP://{ip:port}/v1/ns/raft/datum : Follower节点接收Leader传来的数据删除操作
GET HTTP://{ip:port}/v1/ns/raft/leader : 获取当前集群的Leader节点信息
GET HTTP://{ip:port}/v1/ns/raft/listeners : 获取当前Raft集群的所有事件监听者
RaftPeerSet
心跳机制
Raft中使用心跳机制来触发leader选举。心跳定时任务是在GlobalExecutor 中,
通过 GlobalExecutor.register(new HeartBeat())注册心跳定时任务,具体操作包括:
- 重置Leader节点的heart timeout、election timeout;
- sendBeat()发送心跳包
public class HeartBeat implements Runnable {
@Override
public void run() {
try {
if (!peers.isReady()) {
return;
}
RaftPeer local = peers.local();
local.heartbeatDueMs -= GlobalExecutor.TICK_PERIOD_MS;
if (local.heartbeatDueMs > 0) {
return;
}
local.resetHeartbeatDue();
sendBeat();
} catch (Exception e) {
Loggers.RAFT.warn("[RAFT] error while sending beat {}", e);
}
}
}
简单说明了下Nacos中的Raft一致性实现,更详细的流程,可以下载源码,查看 RaftCore 进行了解。源码可以通过以下地址检出:
git clone https://github.com/alibaba/nacos.git

扫码关注公众号:架构进化论,获得第一手的技术资讯和原创文章
对标Eureka的AP一致性,Nacos如何实现Raft算法的更多相关文章
- 分布式一致性协议之:Raft算法
一致性算法Raft详解 背景 熟悉或了解分布性系统的开发者都知道一致性算法的重要性,Paxos一致性算法从90年提出到现在已经有二十几年了,而Paxos流程太过于繁杂实现起来也比较复杂,可能也是以为过 ...
- eureka的简单介绍,eureka单节点版的实现?eureka的自我保护?eureka的AP性,和CP性?
注意!!! 这是对上一篇博客 springcloud的延续,整个项目的搭建,来源与上一篇博客.一.什么是eureka? // eureka是一个注册中心,实现了dubbo中zookeeper的效果! ...
- 搞懂分布式技术2:分布式一致性协议与Paxos,Raft算法
搞懂分布式技术2:分布式一致性协议与Paxos,Raft算法 2PC 由于BASE理论需要在一致性和可用性方面做出权衡,因此涌现了很多关于一致性的算法和协议.其中比较著名的有二阶提交协议(2 Phas ...
- 分布式一致性算法:Raft 算法(论文翻译)
Raft 算法是可以用来替代 Paxos 算法的分布式一致性算法,而且 raft 算法比 Paxos 算法更易懂且更容易实现.本文对 raft 论文进行翻译,希望能有助于读者更方便地理解 raft 的 ...
- 从分布式一致性到共识机制(二)Raft算法
春秋五霸说开 春秋五霸,是指东周春秋时期相继称霸主的五个诸侯,“霸”,意为霸主,即是诸侯之领袖.典型的比如齐桓公,晋文公,春秋时期诸侯国的称霸,与今天要讨论的Raft算法很像. 一.更加直观的Raft ...
- 【转】分布式一致性算法:Raft 算法(Raft 论文翻译)
编者按:这篇文章来自简书的一个位博主Jeffbond,读了好几遍,翻译的质量比较高,原文链接:分布式一致性算法:Raft 算法(Raft 论文翻译),版权一切归原译者. 同时,第6部分的集群成员变更读 ...
- 理解分布式一致性与Raft算法
理解分布式一致性与Raft算法 永远绕不开的CAP定理 出于可用性及负载方面考虑,一个分布式系统中数据必然不会只存在于一台机器,一致性简单地说就是分布式系统中的各个部分保持数据一致 但让数据保持一致往 ...
- 分布式系统一致性问题与Raft算法(上)
最近在做MIT6.824的几个实验,真心觉得每一个做分布式相关开发的程序员都应该去刷一遍(裂墙推荐),肯定能够提高自己的技术认知水平,同时也非常感谢MIT能够把这么好的资源分享出来. 其中第二个实验, ...
- 分布式系统一致性问题与Raft算法(下)
上一篇讲述了什么是分布式一致性问题,以及它难在哪里,liveness和satefy问题,和FLP impossibility定理.有兴趣的童鞋可以看看分布式系统一致性问题与Raft算法(上). 这一节 ...
随机推荐
- linux /proc 接口和共享中断
在系统中安装共享处理者不影响 /proc/stat, 它甚至不知道处理者. 但是, /proc/interrupts 稍稍变化. 所有同一个中断号的安装的处理者出现在 /proc/interrupts ...
- H3C配置console口密码
方法一: [H3C]user-interface console 0 [H3C-ui-console0]authentication-mode password [H3C-ui-console0]se ...
- 【GYM102091】2018-2019 ACM-ICPC, Asia Nakhon Pathom Regional Contest
A-Evolution Game 题目大意:有$n$个不同的野兽,定义第$i$ 个野兽有 $i$ 个眼睛和 $h[i]$ 个角,你可以任意从中选择一个野兽进行进化,每次进化角数量必须增加,而且进化后要 ...
- 【2016常州一中夏令营Day4】
小 W 走迷宫[问题描述]小 W 被小 M 困在了一个方格矩阵迷宫里,矩阵边界在无穷远处,我们做出如下的假设:a. 每走一步时,只能从当前方格移动一格,走到某个相邻的方格上:b. 走过的格子立即塌陷无 ...
- C#面试题整理2(不带答案)
一.C# 理论 1.1.简述 private. protected. public. internal.protected internal 访问修饰符和访问权限 1.2.简述abstract.sea ...
- boostrap-非常好用但是容易让人忽略的地方【2】:row
row是非常好用但是却非常容易忽略的地方. 想实现内部元素相对父级的padding=0,则在父子中间加个row.如下图 列嵌套也是同样的道理 经验之谈:学会row的用法,在手机版布局的时候会很方便,否 ...
- MindV编入微软云计算中小企业解决方案
鹰翔MindV思维导图软件基于云计算,曾作为windows azure云计算的一个样例介绍,收入中小企业解决方案中.http://www.microsoft.com/hk/smb/cloud/azur ...
- (转载)window安装mysql
一.MYSQL的安装 1.打开下载的mysql安装文件mysql-5.5.27-win32.zip,双击解压缩,运行“setup.exe”. 2.选择安装类型,有“Typical(默认)”.“Comp ...
- 举例理解Hibernate的三种状态(转)
转自:https://blog.csdn.net/yiguang_820/article/details/79073152 初学Hibernate,了解到Hibernate有三种状态:transien ...
- 第二阶段:1.流程图:11.PPT绘制页面流程图
产品经理主要绘制两个图:1.业务流程图(谁在什么条件下完成什么任务)2.页面流程图(具体到产品呈现的功能设计等等细节方面) 选择插入 选择流程图中的形状 设置两个矩形 同时添加不同的背景色 添加文本框 ...