传送门

Luogu

解题思路

离散化没什么好说

有一种暴力的想法就是枚举每一个坟墓,用一些数据结构维护一下这个店向左,向右,向上,向下的常青树的个数,然后用组合数统计方案。

但是网格图边长就有 \(1e9\) 级别,于是这种方法就萎了。

考虑从常青树下手。

我们可以发现在同一竖排中的两颗相邻的常青树之间的坟墓在纵方向的贡献是一样的。

所以我们维护每一竖排的常青树,每一横排的贡献用线段树维护即可。

细节注意事项

  • 咕咕咕

参考代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#include <vector>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= (c == '-'), c = getchar();
while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
s = f ? -s : s;
} typedef long long LL;
const LL p = 2147483648;
const int _ = 100010; int n, k, c[12][_];
int xx, yy, X[_], Y[_];
vector < int > vec[_];
struct node{ int x, y; }t[_];
int sum[_ << 2], R[_ << 2], L[_ << 2], val[_]; inline int lc(int rt) { return rt << 1; } inline int rc(int rt) { return rt << 1 | 1; } inline void pushup(int rt) { sum[rt] = (sum[lc(rt)] + sum[rc(rt)]) % p; } inline void build(int rt = 1, int l = 1, int r = yy) {
if (l == r) { R[rt] = val[l]; return ; }
int mid = (l + r) >> 1;
build(lc(rt), l, mid), build(rc(rt), mid + 1, r);
} inline void update(int id, int rt = 1, int l = 1, int r = yy) {
if (l == r) {
--R[rt], ++L[rt], sum[rt] = 1ll * c[k][L[rt]] * c[k][R[rt]] % p;
return ;
}
int mid = (l + r) >> 1;
if (id <= mid) update(id, lc(rt), l, mid);
else update(id, rc(rt), mid + 1, r);
pushup(rt);
} inline LL query(int ql, int qr, int rt = 1, int l = 1, int r = yy) {
if (ql <= l && r <= qr) return sum[rt];
int mid = (l + r) >> 1; LL res = 0;
if (ql <= mid) res = (res + query(ql, qr, lc(rt), l, mid)) % p;
if (qr > mid) res = (res + query(ql, qr, rc(rt), mid + 1, r)) % p;
return res;
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.in", "r", stdin);
#endif
read(n), read(n), read(n);
for (rg int i = 1; i <= n; ++i) {
read(t[i].x), X[i] = t[i].x;
read(t[i].y), Y[i] = t[i].y;
}
sort(X + 1, X + n + 1), xx = unique(X + 1, X + n + 1) - X - 1;
for (rg int i = 1; i <= n; ++i) t[i].x = lower_bound(X + 1, X + xx + 1, t[i].x) - X;
sort(Y + 1, Y + n + 1), yy = unique(Y + 1, Y + n + 1) - Y - 1;
for (rg int i = 1; i <= n; ++i) t[i].y = lower_bound(Y + 1, Y + yy + 1, t[i].y) - Y;
read(k), c[0][0] = 1;
for (rg int i = 1; i <= n; ++i) {
++val[t[i].y], vec[t[i].x].push_back(t[i].y);
c[0][i] = 1;
for (rg int j = 1; j <= k; ++j)
c[j][i] = (c[j][i - 1] + c[j - 1][i - 1]) % p;
}
build();
LL res = 0;
for (rg int i = 1; i <= xx; ++i) {
sort(vec[i].begin(), vec[i].end());
if (!vec[i].empty()) update(vec[i][0]);
int siz = vec[i].size();
for (rg int j = 1; j < siz; ++j) {
if (vec[i][j - 1] + 1 <= vec[i][j] - 1 && j >= k && siz - j >= k)
res = (res + 1ll * query(vec[i][j - 1] + 1, vec[i][j] - 1) * c[k][j] % p * c[k][siz - j] % p) % p;
update(vec[i][j]);
}
}
printf("%lld\n", res);
return 0;
}

完结撒花 \(qwq\)

「SDOI2009」虔诚的墓主人的更多相关文章

  1. 「SDOI2009」Bill的挑战

    「SDOI2009」Bill的挑战 传送门 状压 \(\text{DP}\) 瞄一眼数据范围 \(N\le15\),考虑状压. 设 \(f[i][j]\) 表示在所有串中匹配到第 \(i\) 位字符且 ...

  2. 「SDOI2009」HH的项链

    「SDOI2009」HH的项链 传送门 数据加强了,莫队跑不过了. 考虑用树状数组. 先把询问按右端点递增排序. 然后对于每一种贝壳,我们都用它最右一次出现的位置计算答案. 具体细节看代码吧. 参考代 ...

  3. BZOJ 1227 【SDOI2009】 虔诚的墓主人

    Description 小W 是一片新造公墓的管理人.公墓可以看成一块 \(N×M\) 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地.当地的居民都是非常虔诚的基督徒,他们愿意 ...

  4. 「题解报告」P2154 虔诚的墓主人

    P2154 虔诚的墓主人 题解 原题传送门 题意 在 \(n\times m\) 一个方格上给你 \(w\) 个点,求方格里每个点正上下左右各选 \(k\) 个点的方案数. \(1 \le N, M ...

  5. BZOJ 1227: [SDOI2009]虔诚的墓主人

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1078  Solved: 510[Submit][Stat ...

  6. Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 895  Solved: 422[Submit][Statu ...

  7. bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 803  Solved: 372[Submit][Statu ...

  8. 1227: [SDOI2009]虔诚的墓主人

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1083  Solved: 514[Submit][Stat ...

  9. bzoj1227 P2154 [SDOI2009]虔诚的墓主人

    P2154 [SDOI2009]虔诚的墓主人 组合数学+离散化+树状数组 先看题,结合样例分析,易得每个墓地的虔诚度=C(正左几棵,k)*C(正右几棵,k)*C(正上几棵,k)*C(正下几棵,k),如 ...

随机推荐

  1. mysql之路4

    MYSQL之约束 2.主键约束 349行cnname换成cname

  2. python之路xml模块补充

    创建一个子节点一共有三个方式 创建一个子节点2.3

  3. AcWing 799. 最长连续不重复子序列 双指针(一般先写一个朴素暴力的做法,然后看两个指针直接是否存在单调关系,如果存在,就想方法优化)

    https://www.acwing.com/problem/content/801/ #include<bits/stdc++.h> using namespace std ; int ...

  4. dremio的学习点滴

    在连接数据源后,进行数据源反射的创建,dremio会在本地创建一个类似于副本的文件,具体目录未知,当下次去执行sql时,则会启动加速器进行查询速度的优化. 反射策略: full update:数据源全 ...

  5. koa2第一天

    router.get("/hello",async(ctx )=>{ const a=await new Promise(reslove=>reslove(123)) ...

  6. python 序列 倒着取元素

    当要倒着取元素时,用s[-2]只能取一个, 如果取多个时用s[-9:-1],注意,最后一个-1是不取出来的. 此时要用s[-9:] 最后一个空着就可以取出来了.

  7. Redis如果内存满了怎么办?

    Redis占用内存大小 我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小. 1.通过配置文件配置 ...

  8. SQL更新语句的执行

    联系上文SQL查询语句的执行 查询语句的那一套流程,更新语句也是同样会走一遍. 更新流程还涉及两个重要的日志模块: ​ redo log(重做日志)和 binlog(归档日志) redo log:重做 ...

  9. Django Auth组件->扩展用户

    Auth用户 1.声明用户表 djangauth/settings.py..............................AUTH_USER_MODEL = 'app01.UserInfo' ...

  10. jmeter的使用---控制器

    1.如果(If)控制器.Switch Controller if控制语句,判断字段是否存在,或者符合,执行不同的逻辑 2.简单控制器 一次进件流程,需要不同模块的数据,例如登陆,提交个人信息,信用认证 ...