题意:n个位置,k种颜色。求有多少种方案使得每种颜色恰出现d的倍数次。

解:d=1就快速幂,n,k很小就DP,记得乘组合数来分配位置。

d = 2 / 3的时候,考虑生成函数。

f(x) = ∑[d | i] / (i!)

然后发现d = 2的时候就是(ex + e-x) / 2,这个东西的k次方可以用二项式定理展开,然后O(klogn)算,log是快速幂。

d = 3的时候用单位根反演,O(k2)枚举系数,同样算。因为我不想学单位根反演就没写...

 #include <bits/stdc++.h>

 typedef long long LL;

 const int N = , MO = ;

 int n, k, d;

 inline int qpow(int a, int b) {
int ans();
while(b) {
if(b & ) {
ans = (LL)ans * a % MO;
}
a = (LL)a * a % MO;
b = b >> ;
}
return ans;
} namespace DP {
int f[][], C[][];
inline void solve() {
f[][] = ;
for(int i = ; i <= ; i++) {
C[i][] = C[i][i] = ;
for(int j = ; j < i; j++) {
C[i][j] = (C[i - ][j] + C[i - ][j - ]) % MO;
}
}
for(int i = ; i < k; i++) {
for(int j = ; j <= n; j++) {
for(int p = ; j + p <= n; p += d) {
(f[i + ][j + p] += (LL)f[i][j] * C[n - j][p] % MO) %= MO;
}
}
}
printf("%d\n", f[k][n]);
return;
}
} namespace D2 { int fac[N], inv[N], invn[N]; inline int C(int n, int m) {
if(n < || m < || n < m) return ;
return (LL)fac[n] * invn[m] % MO * invn[n - m] % MO;
} inline void solve() {
fac[] = inv[] = invn[] = ;
fac[] = inv[] = invn[] = ;
for(int i = ; i <= k; i++) {
fac[i] = (LL)fac[i - ] * i % MO;
inv[i] = (LL)inv[MO % i] * (MO - MO / i) % MO;
invn[i] = (LL)invn[i - ] * inv[i] % MO;
} int ans = ;
for(int i = ; i <= k; i++) {
ans += (LL)C(k, i) * qpow( * i - k, n) % MO;
ans %= MO;
}
int temp = qpow((MO + ) / , k); printf("%lld\n", ((LL)temp * ans % MO + MO) % MO);
return;
}
} int main() { scanf("%d%d%d", &n, &k, &d);
if(d == ) {
printf("%d\n", qpow(k, n));
return ;
}
if(n <= && k <= ) {
DP::solve();
return ;
}
if(d == ) {
D2::solve();
return ;
}
return ;
}

60分代码

UOJ450 复读机的更多相关文章

  1. [2018集训队作业][UOJ450] 复读机 [DP+泰勒展开+单位根反演]

    题面 传送门 思路 本文中所有$m$是原题目中的$k$ 首先,这个一看就是$d=1,2,3$数据分治 d=1 不说了,很简单,$m^n$ d=2 先上个$dp$试试 设$dp[i][j]$表示前$i$ ...

  2. 【做题】UOJ450 - 复读机——单位根反演

    原文链接 https://www.cnblogs.com/cly-none/p/UOJ450.html 题意:请自行阅读. 考虑用生成函数来表示答案.因为秒之间是有序的,所以这应当是个指数生成函数.故 ...

  3. uoj450 【集训队作业2018】复读机(生成函数,单位根反演)

    uoj450 [集训队作业2018]复读机(生成函数,单位根反演) uoj 题解时间 首先直接搞出单个复读机的生成函数 $ \sum\limits_{ i = 0 }^{ k } [ d | i ] ...

  4. UOJ#450. 【集训队作业2018】复读机 排列组合 生成函数 单位根反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ450.html 题解 首先有一个东西叫做“单位根反演”,它在 FFT 的时候用到过: $$\frac 1 ...

  5. UOJ #450「集训队作业2018」复读机

    UOJ #450 题意 有$ k$台复读机,每时每刻有且只有一台复读机进行复读 求$ n$时刻后每台复读机的复读次数都是$ d$的倍数的方案数 $ 1\leq d \leq 3,k \leq 5·10 ...

  6. 处女座与复读机 DP

    题目链接:https://ac.nowcoder.com/acm/contest/327/G 题意:给你两个字符串序列,让你根据第二个序列判断是不是 复读机,复读机会有以下特征 1.       将任 ...

  7. 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

  8. 牛客国庆集训派对Day4 J-寻找复读机

    链接:https://www.nowcoder.com/acm/contest/204/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  9. uoj#450. 【集训队作业2018】复读机(单位根反演)

    题面 传送门 题解 我的生成函数和单位根反演的芝士都一塌糊涂啊-- \(d=1\),答案就是\(k^n\)(因为这里\(k\)个复读机互不相同,就是说有标号) \(d=2\),我们考虑复读机的生成函数 ...

随机推荐

  1. Spring源码由浅入深系列四 创建BeanFactory

    继上一章refresh之后,上图描述了obtainFreshBeanFactory过程.

  2. [02]APUE:POSIX 正则库(#include <regex.h>)

    正则匹配流程: 声明一个 regex_t 类型的变量(结构体) regcomp 函数会将“正则匹配条件”写入此结构体,并编译成特定的二进制格式(加快匹配速度) 声明一个 regmatch_t 类型的变 ...

  3. Day 7 :一句话Python(匿名函数-lambda,三元运算,列表表达式,生成器表达式)

    注意: 1.所有的列表表达式都可以转换成生成器表达式 2.经量让标傲世简化你得操作,增加代码可读性 3.如果代码过于复杂,应该转换成普通代码 4.再代码中尽可能多使用生成器表达式. 三元运算符:简化代 ...

  4. xml初步,DTD和Schema约束

    XML 可扩展的标记语言(!!!可扩展) 作用 1.存放数据 2.配置文件 语法 文档声明 <?xml version="1.0" encoding="UTF-8& ...

  5. python 13 字符编码

    转自 http://www.cnblogs.com/BeginMan/p/3166363.html 一.字符编码中ASCII.Unicode和UTF-8的区别 点击阅读:http://www.cnbl ...

  6. LeetCode 31. Next Permutation【Medium】

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  7. JDBC_数据库连接池c3p0

    /** * @Description: TODO(这里用一句话描述这个类的作用) * @Author aikang * @Date 2019/8/26 20:12 */ /* 1.数据库连接池: 1. ...

  8. PHP算法之按奇偶排序数组

    给定一个非负整数数组 A,返回一个数组,在该数组中, A 的所有偶数元素之后跟着所有奇数元素. 你可以返回满足此条件的任何数组作为答案. 示例: 输入:[3,1,2,4]输出:[2,4,3,1]输出 ...

  9. python的异常捕捉

    你可能会说既然有万能异常Exception,那么我直接用上面的这种形式就好了,其他异常可以忽略 你说的没错,但是应该分两种情况去看 1.如果你想要的效果是,无论出现什么异常,我们统一丢弃,或者使用同一 ...

  10. CF930E Coins Exhibition

    题意:平面上一共有k个硬币(k<=1e9),给你n个区间这些区间中至少有一个硬币反面朝上,m个区间中至少有一个硬币正面朝上.问有多少种硬币放置方案?n,m<=100005. 标程: #in ...