题意:n个位置,k种颜色。求有多少种方案使得每种颜色恰出现d的倍数次。

解:d=1就快速幂,n,k很小就DP,记得乘组合数来分配位置。

d = 2 / 3的时候,考虑生成函数。

f(x) = ∑[d | i] / (i!)

然后发现d = 2的时候就是(ex + e-x) / 2,这个东西的k次方可以用二项式定理展开,然后O(klogn)算,log是快速幂。

d = 3的时候用单位根反演,O(k2)枚举系数,同样算。因为我不想学单位根反演就没写...

 #include <bits/stdc++.h>

 typedef long long LL;

 const int N = , MO = ;

 int n, k, d;

 inline int qpow(int a, int b) {
int ans();
while(b) {
if(b & ) {
ans = (LL)ans * a % MO;
}
a = (LL)a * a % MO;
b = b >> ;
}
return ans;
} namespace DP {
int f[][], C[][];
inline void solve() {
f[][] = ;
for(int i = ; i <= ; i++) {
C[i][] = C[i][i] = ;
for(int j = ; j < i; j++) {
C[i][j] = (C[i - ][j] + C[i - ][j - ]) % MO;
}
}
for(int i = ; i < k; i++) {
for(int j = ; j <= n; j++) {
for(int p = ; j + p <= n; p += d) {
(f[i + ][j + p] += (LL)f[i][j] * C[n - j][p] % MO) %= MO;
}
}
}
printf("%d\n", f[k][n]);
return;
}
} namespace D2 { int fac[N], inv[N], invn[N]; inline int C(int n, int m) {
if(n < || m < || n < m) return ;
return (LL)fac[n] * invn[m] % MO * invn[n - m] % MO;
} inline void solve() {
fac[] = inv[] = invn[] = ;
fac[] = inv[] = invn[] = ;
for(int i = ; i <= k; i++) {
fac[i] = (LL)fac[i - ] * i % MO;
inv[i] = (LL)inv[MO % i] * (MO - MO / i) % MO;
invn[i] = (LL)invn[i - ] * inv[i] % MO;
} int ans = ;
for(int i = ; i <= k; i++) {
ans += (LL)C(k, i) * qpow( * i - k, n) % MO;
ans %= MO;
}
int temp = qpow((MO + ) / , k); printf("%lld\n", ((LL)temp * ans % MO + MO) % MO);
return;
}
} int main() { scanf("%d%d%d", &n, &k, &d);
if(d == ) {
printf("%d\n", qpow(k, n));
return ;
}
if(n <= && k <= ) {
DP::solve();
return ;
}
if(d == ) {
D2::solve();
return ;
}
return ;
}

60分代码

UOJ450 复读机的更多相关文章

  1. [2018集训队作业][UOJ450] 复读机 [DP+泰勒展开+单位根反演]

    题面 传送门 思路 本文中所有$m$是原题目中的$k$ 首先,这个一看就是$d=1,2,3$数据分治 d=1 不说了,很简单,$m^n$ d=2 先上个$dp$试试 设$dp[i][j]$表示前$i$ ...

  2. 【做题】UOJ450 - 复读机——单位根反演

    原文链接 https://www.cnblogs.com/cly-none/p/UOJ450.html 题意:请自行阅读. 考虑用生成函数来表示答案.因为秒之间是有序的,所以这应当是个指数生成函数.故 ...

  3. uoj450 【集训队作业2018】复读机(生成函数,单位根反演)

    uoj450 [集训队作业2018]复读机(生成函数,单位根反演) uoj 题解时间 首先直接搞出单个复读机的生成函数 $ \sum\limits_{ i = 0 }^{ k } [ d | i ] ...

  4. UOJ#450. 【集训队作业2018】复读机 排列组合 生成函数 单位根反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ450.html 题解 首先有一个东西叫做“单位根反演”,它在 FFT 的时候用到过: $$\frac 1 ...

  5. UOJ #450「集训队作业2018」复读机

    UOJ #450 题意 有$ k$台复读机,每时每刻有且只有一台复读机进行复读 求$ n$时刻后每台复读机的复读次数都是$ d$的倍数的方案数 $ 1\leq d \leq 3,k \leq 5·10 ...

  6. 处女座与复读机 DP

    题目链接:https://ac.nowcoder.com/acm/contest/327/G 题意:给你两个字符串序列,让你根据第二个序列判断是不是 复读机,复读机会有以下特征 1.       将任 ...

  7. 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

  8. 牛客国庆集训派对Day4 J-寻找复读机

    链接:https://www.nowcoder.com/acm/contest/204/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  9. uoj#450. 【集训队作业2018】复读机(单位根反演)

    题面 传送门 题解 我的生成函数和单位根反演的芝士都一塌糊涂啊-- \(d=1\),答案就是\(k^n\)(因为这里\(k\)个复读机互不相同,就是说有标号) \(d=2\),我们考虑复读机的生成函数 ...

随机推荐

  1. C++的new和delete

    #include <iostream> using namespace std; int main(int argc, char *argv[]) { int *p = NULL; //定 ...

  2. tensorflow TypeError: Can not convert a float32 into a Tensor or Operation

    遇到这种情况可能是你的程序中有和你定义的tensor 变量重名的其他变量名字,jishi在for循环中使用了这个名字的作为临时变量也不行.tenor 变量很娇气.坑了我一晚上的时间. 比如:x = t ...

  3. TensorFlow 与cudnn版本不匹配问题

    log:Loaded runtime CuDNN library: 7.1.4 but source was compiled with: 7.2.1. 我安装的事cuda 9.0  cudnn 7. ...

  4. Scala 学习2

    去map里面的数据 scala> val map = Map("a"->1, "b"->2, "c"->3) map ...

  5. VBA文件对话框的应用(VBA打开文件、VBA选择文件、VBA选择文件夹)

    在VBA中经常要用到文件对话框来进行打开文件.选择文件或选择文件夹的操作.用Microsoft Office提供的文件对话框比较方便.用法如下Application.FileDialog(fileDi ...

  6. 【笔记篇】斜率优化dp(二) SDOI2016征途

    =======传=送=门======= 搜题目名会搜出很多奇怪的东西... 这个题目似乎有点毒? 比如在bzoj和loj上可以1A的代码上会在luogu TLE 2个点, 在cogs TLE 10个点 ...

  7. sql(10) sum

    SUM() 函数SUM 函数返回数值列的总数(总额).SQL SUM() 语法SELECT SUM(column_name) FROM table_name新建表 StudentSS_id Grade ...

  8. Java Collection - ArrayList & LinkedList

    总结 ref: https://blog.csdn.net/qq_32679815/article/details/78907437 1-ArrayList是实现了基于动态数组的数据结构,Linked ...

  9. MySQL架构和索引

    MySQL架构 逻辑架构图: 大概分为四层,这个见仁见义,有不同的分法: 第一层Connectors:处理不同语言与SQL的交互 第二层Connection Pool :连接池,管理缓存用户连接,线程 ...

  10. jQuery ajax - post() 方法

    实例 请求 test.php 网页,忽略返回值: $.post("test.php"); TIY 实例 通过 AJAX POST 请求改变 div 元素的文本: $("i ...