梯度下降算法&线性回归算法
**机器学习的过程说白了就是让我们编写一个函数使得costfunction最小,并且此时的参数值就是最佳参数值。
定义
假设存在一个代价函数
fun:\(J\left(\theta_{0}, \theta_{1}\right)\)
通过不断地调整\(\theta_{0}\)和\(\theta_{1}\)是函数\(J\left(\theta_{0}, \theta_{1}\right)\)取得最小值
梯度下降就是使J不断通过导数下降的一种算法
\(\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta_{0}, \theta_{1}\right)\)
\(a\)是学习率,也就是梯度下降的效率
- 如果学习效率过小,则导致J下降太慢,
- 如果学习效率太大,会导致到不了J最小值,会直接越过最小值,这时候代价函数反而变大了
- 因此适度最好。参考
线性回归梯度下降
给出梯度下降的参数更新公式,\(\theta_0\)和\(\theta_1\)要同时更新
线性回归算法
说白了就是将梯度下降算法应用到代价函数中,求使代价函数最小的\(\theta_0\)和\(\theta_1\),这个就是多元微积分里面的求偏导数,因为是两个未知数,同时求两个未知数
假设函数和代价函数的关系
晚点我更新一下代码!
梯度下降算法&线性回归算法的更多相关文章
- flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )
1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...
- 机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)
本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有 ...
- 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...
- AI-Tensorflow-神经网络优化算法-梯度下降算法-学习率
记录内容来自<Tensorflow实战Google一书>及MOOC人工智能实践 http://www.icourse163.org/learn/PKU-1002536002?tid=100 ...
- 梯度下降算法的一点认识(Ng第一课)
昨天开始看Ng教授的机器学习课,发现果然是不错的课程,一口气看到第二课. 第一课 没有什么新知识,就是机器学习的概况吧. 第二课 出现了一些听不太懂的概念.其实这堂课主要就讲了一个算法,梯度下降算法. ...
- 监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...
- [机器学习Lesson3] 梯度下降算法
1. Gradient Descent(梯度下降) 梯度下降算法是很常用的算法,可以将代价函数J最小化.它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域. 1.1 线性回归问题应用 我们 ...
- Spark MLib:梯度下降算法实现
声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descen ...
- 梯度下降算法对比(批量下降/随机下降/mini-batch)
大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度 ...
随机推荐
- python安装模块速度慢的解决方法
1.Win+R,cmd 2.pip install pqi 3.pqi use aliyun
- C语言三 语句练习
输入一个整数day代表星期几,根据day的值输出对应的星期几,比如day==1,就输出“星期一”(用两种方式实现) int Day; printf("请输入一个1~7的数字"); ...
- 关于simplememory theme的设置和感想
前言 首先,这是我第一次自己个性化博客的主题.如果下文所写如有不妥之处还望大佬指出 参考 这次设置多亏了GitHub上的开源代码:https://github.com/BNDong/Cnblogs-T ...
- 14.Android-使用sendMessage线程之间通信
1.Handler介绍 Handler 是一个消息分发对象.handler是Android给我们提供用来更新UI的一套机制,也是一套消息处理机制,通过它可以实现在不同线程之间传递消息 本章Handle ...
- 一行代码解决MacBook Pro安装VSCode没有应用图标问题
笔者今天升级了VSCode,安装完后发现Dock(程序坞)没有VSCode的图标了,导致切换应用非常不方便. 具体情况就像下面这张图,VSCode明明开着,但是在Dock找不到VSCode了. 解决办 ...
- kubernetes 资源管理
前言 在kubernetes环境下,无论集群再大,对应的集群资源(cpu.memory.storage)总是有上限的.而默认情况下,我们启动的pod.以及pod中运行的容器,对应的资源是不加限制的.理 ...
- PHP0026:PHP 博客项目开发3
- NFS服务配置 Linux
两台机器: NFS服务器:192.168.1.100 (我的是Ubuntu系统) 客户机:192.168.1.123 (保证两台机器互相可以ping通) 需求:在NFS服务器上创建一个共享文件夹/ho ...
- 微软帮助类SqlHelper
using System; using System.Data; using System.Xml; using System.Data.SqlClient; using System.Collect ...
- 【redis】基于redis实现分布式并发锁
基于redis实现分布式并发锁(注解实现) 说明 前提, 应用服务是分布式或多服务, 而这些"多"有共同的"redis"; (2017-12-04) 笑哭, 写 ...