[51nod 1847]奇怪的数学题
【 51nod 1847 】奇怪的数学题
题目
点这里看题目。
分析
是挺奇怪的......
以下定义质数集合为\(P\),\(p_i\)为第\(i\)个质数。
定义\(mp(x)\)为\(x\)的最小质因子,则可以得到:
\]
这个比较显然。然后可以娴熟地变换式子得到:
\]
后面的求\(\varphi\)的前缀和的部分可以用杜教筛等筛法高速求出。这里推荐杜教筛,因为它可以方便地记忆化。
并且可以发现,\(\varphi\)的前缀和的上限实际上可以整除分块。所以,如果可以告诉求出\(\left(\frac d{mp(d)}\right)^k\),我们就可以整除分块了。这也是杜教筛比较占优势的原因——一次杜教筛就可以筛出所有需要的值,并且存下来。
问题变成了如何解决前一部分的求和。考虑使用 min_25。
min_25 首先需要算出在质数位置的贡献,不难发现这些位置的贡献为\(1^k=1\)。因此只需要筛出质数数量即可。
其它的位置需要筛。首先有常见操作:
设\(f(x)=x^k\),\(g(a,b)\)为前\(a\)个数进行了\(b\)轮埃筛之后的\(f\)的总贡献。
转移略。这是常见操作。
不过仔细想想,我们会发现转移出现的\(g(\lfloor\frac a{p_b}\rfloor, b-1)-g(p_{b-1},b-1)\)实际上就是 " 最小质因数为\(p_b\)的数的贡献 " (最小质因数少乘上一次)。因此我们实际操作的时候就不用写 min_25 的第二步,而是直接每轮累加起来,就可以得到合数的贡献。
而质数的贡献已经知道是质数个数了。所以对于每次询问,我们可以直接将合数和质数的贡献加起来回答。
但是,\(g(a,0)=\sum_{i=2}^a i^k\),这个该怎么计算呢?
可以用第二类斯特林数来处理:
\sum_{i=1}^n i^k
&=\sum_{i=1}^n \sum_{j=1}^k {k\brace j} i^{\underline j}\\
&=\sum_{j=1}^k {k\brace j}\sum_{i=1}^n i^{\underline j}\\
&=\sum_{j=1}^k{k\brace j}\frac{(n+1)^{\underline{j+1}}}{j+1}
\end{aligned}\]
其中一步推导用到了 " 离散微积分 " 的东西,我不会了,可以参考[第二类斯特林数]自然数幂求和。
需要注意的是,由于这道题取模方法是自然溢出,因此不能求逆元。但由于求幂和的时候结果一定是整数,所以在\((n+1)^{\underline{j+1}}\)里面一定有一个\(j+1\)的倍数。我们可以先用余数把它找出来,除掉\(j+1\)之后再将剩下的乘起来即可。
代码
#include <map>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long LL;
typedef unsigned int ui;
const int MAXN = 1e5 + 5, MAXK = 55;
template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
}
template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
}
map<int, ui> mp;
ui G[MAXN << 1], g1[MAXN << 1], gk[MAXN << 1];
ui ps[MAXN], pks[MAXN], pk[MAXN];
ui S[MAXK][MAXK];
int val[MAXN << 1];
int id1[MAXN], id2[MAXN];
int phi[MAXN], prime[MAXN], pn;
int N, K, s, cnt;
bool isPrime[MAXN];
int& ID( const int x ) { return x <= s ? id1[x] : id2[N / x]; }
ui qkpow( ui base, int indx )
{
ui ret = 1;
while( indx )
{
if( indx & 1 ) ret *= base;
base *= base, indx >>= 1;
}
return ret;
}
void EulerSieve( const int siz )
{
phi[1] = 1, isPrime[1] = true;
for( int i = 2 ; i <= siz ; i ++ )
{
if( ! isPrime[i] ) prime[++ pn] = i, phi[i] = i - 1;
for( int j = 1 ; j <= pn && 1ll * i * prime[j] <= siz ; j ++ )
{
isPrime[i * prime[j]] = true;
if( ! ( i % prime[j] ) ) { phi[i * prime[j]] = phi[i] * prime[j]; break; }
phi[i * prime[j]] = phi[i] * ( prime[j] - 1 );
}
}
for( int i = 1 ; i <= pn ; i ++ ) pks[i] = pks[i - 1] + ( pk[i] = qkpow( prime[i], K ) );
for( int i = 1 ; i <= siz ; i ++ ) ps[i] = ps[i - 1] + phi[i];
}
ui getS( const int a )
{
ui ret = 0, t;
for( int i = 1, tmp ; i <= K ; i ++ )
{
tmp = ( a + 1 ) % ( i + 1 ), t = S[K][i];
for( int j = 1 ; j <= tmp ; j ++ ) t *= ( a - j + 2 );
t *= ( a - tmp + 1 ) / ( i + 1 );
for( int j = tmp + 2 ; j <= i + 1 ; j ++ ) t *= ( a - j + 2 );
ret += t;
}
return ret;
}
ui SPhi( const int n )
{
if( n <= s ) return ps[n];
if( mp[n] ) return mp[n];
ui ret;
if( n & 1 ) ret = ( ui ) ( n + 1 ) / 2 * n;
else ret = ( ui ) n / 2 * ( n + 1 );
for( int l = 2, r ; l <= n ; l = r + 1 )
{
r = n / ( n / l );
ret -= ( r - l + 1 ) * SPhi( n / l );
}
return mp[n] = ret;
}
int main()
{
read( N ), read( K );
s = sqrt( N );
EulerSieve( s );
for( int i = 1 ; i <= K ; i ++ ) S[i][i] = 1, S[i][0] = 0;
for( int i = 2 ; i <= K ; i ++ )
for( int j = 1 ; j <= K ; j ++ )
S[i][j] = S[i - 1][j - 1] + ( ui ) j * S[i - 1][j];
for( int l = 1, r, v ; l <= N ; l = r + 1 )
{
r = N / ( v = N / l ), val[++ cnt] = v;
g1[ID( v ) = cnt] = v - 1, gk[cnt] = getS( v ) - 1;
}
for( int j = 1, k ; j <= pn ; j ++ )
for( int i = 1 ; i <= cnt && 1ll * prime[j] * prime[j] <= val[i] ; i ++ )
{
k = ID( val[i] / prime[j] );
g1[i] -= g1[k] - ( j - 1 );
gk[i] -= ( ui ) pk[j] * ( gk[k] - pks[j - 1] );
G[i] += gk[k] - pks[j - 1];
}
ui ans = 0, pre = 0, nxt;
for( int l = 2, r, v ; l <= N ; l = r + 1 )
{
r = N / ( v = N / l );
nxt = G[ID( l )] + g1[ID( l )];
ans += ( ui ) ( 2u * SPhi( v ) - 1 ) * ( nxt - pre ), pre = nxt;
}
write( ans ), putchar( '\n' );
return 0;
}
[51nod 1847]奇怪的数学题的更多相关文章
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- 【51nod 1847】奇怪的数学题
题目描述 给出 N,K ,请计算下面这个式子: \(∑_{i=1}^N∑_{j=1}^Nsgcd(i,j)^k\) 其中,sgcd(i, j)表示(i, j)的所有公约数中第二大的,特殊地,如果gcd ...
- 【51nod 1874】 奇怪的数学题
题目 求 \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 首先这个次大公约数显然就是\(gcd\)除一下最小质因子了 于是 \[\sum_{i=1}^n\sum_{j= ...
- 51nod 1965 奇怪的式子——min_25筛
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 考虑 \( \prod_{i=1}^{n}\sigma_0^i \) \ ...
- [51nod1847]奇怪的数学题
description 51nod 求\[\sum_{i=1}^{n}\sum_{j=1}^{n}sgcd(i,j)^k\]其中\(sgcd(i,j)\)表示\(i,j\)的次大公约数,如果\(gcd ...
- 51nod 1965 奇怪的式子 —— min_25筛
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 推式子就同这里:https://www.cnblogs.com/yoyo ...
- 【51NOD1847】奇怪的数学题 min_25筛
题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\) ...
- 【51nod1847】 奇怪的数学题
就当我是 A 了此题吧... 首先预备知识有点多(因为题目要处理的东西都挺毒瘤): 杜教筛运用(当然你可以用其他筛?) 第二类斯特林数相关定理 下降阶乘幂相关定理 min25 筛运用 好了可以关掉本题 ...
- 【51Nod1847】奇怪的数学题
记\(f(x)=\)\(x\)的次大因数,那么\(sgcd(i,j)=f(gcd(i,j))\). 下面来推式子: \[ \begin{aligned} \sum_{i=1}^n\sum_{j=1 ...
随机推荐
- python3.x 基础四:生成器与迭代器
1.预先存值到内存,调用之前已经占用了内存,不管用与不用,都占用内存 >>> a=[1,2,3,4,5] >>> type(a) <class 'list'& ...
- React Native 架构演进
写在前面 上一篇(React Native 架构一览)从设计.线程模型等方面介绍了 React Native 的现有架构,本篇将分析这种架构的局限性,以及 React Native 正在进行的架构升级 ...
- hdu4746莫比乌斯反演进阶题
Mophues Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others)Total S ...
- .NET Core HttpClient源码探究
前言 在之前的文章我们介绍过HttpClient相关的服务发现,确实HttpClient是目前.NET Core进行Http网络编程的的主要手段.在之前的介绍中也看到了,我们使用了一个很重要的 ...
- uniapp轻轻松松开发各种类型的小程序
1.前言 现在移动端用户使用量占据了市场大部分的比例,今天 给大家说说怎么去开发一个小程序,今天使用的是uniapp 2.什么是uniapp uni-app 是一个使用 Vue.js 开发所有前端应用 ...
- 【数据结构的JavaScript版实现】data-struct-js的npm包初版作成
[数据结构的JavaScript版实现]data-struct-js的npm包初版作成 码路工人 CoderMonkey [数据结构的JavaScript版实现] 拖了这么久,终于趁着春节假期把初版( ...
- JavaScript 实现 冒泡排序
<script> //数组排序(冒泡排序) //冒泡排序是一种算法,把一系列的数据按照一定的循序进行排列显示(从小到大或从大到小) ...
- [Objective-C] 006_Protocol(协议)
学过java的同学都知道Interface(接口),那么在Objective-C中有没有接口呢?其实 Objective-C中用Protocol(协议)来实现的,在Objective-C具体怎么用,我 ...
- String与包装类_字节数组_字符数组间的转换
1.字符串与基本数据类型,包装类之间的转换 2.字符串与字节数组间的转换 3.字符串与字符数组间的转换 4.String与StringBuffer ①String---->StringBuffe ...
- static关键字修饰属性
static 静态的,可以修饰属性,方法,代码块(或初始化块) , 内部内 非static修饰的属性(实例变量):各个对象各自拥有一套各自的副本 static修饰属性(l类变量): 1.由类创建的所有 ...