[51nod 1847]奇怪的数学题
【 51nod 1847 】奇怪的数学题
题目
点这里看题目。
分析
是挺奇怪的......
以下定义质数集合为\(P\),\(p_i\)为第\(i\)个质数。
定义\(mp(x)\)为\(x\)的最小质因子,则可以得到:
\]
这个比较显然。然后可以娴熟地变换式子得到:
\]
后面的求\(\varphi\)的前缀和的部分可以用杜教筛等筛法高速求出。这里推荐杜教筛,因为它可以方便地记忆化。
并且可以发现,\(\varphi\)的前缀和的上限实际上可以整除分块。所以,如果可以告诉求出\(\left(\frac d{mp(d)}\right)^k\),我们就可以整除分块了。这也是杜教筛比较占优势的原因——一次杜教筛就可以筛出所有需要的值,并且存下来。
问题变成了如何解决前一部分的求和。考虑使用 min_25。
min_25 首先需要算出在质数位置的贡献,不难发现这些位置的贡献为\(1^k=1\)。因此只需要筛出质数数量即可。
其它的位置需要筛。首先有常见操作:
设\(f(x)=x^k\),\(g(a,b)\)为前\(a\)个数进行了\(b\)轮埃筛之后的\(f\)的总贡献。
转移略。这是常见操作。
不过仔细想想,我们会发现转移出现的\(g(\lfloor\frac a{p_b}\rfloor, b-1)-g(p_{b-1},b-1)\)实际上就是 " 最小质因数为\(p_b\)的数的贡献 " (最小质因数少乘上一次)。因此我们实际操作的时候就不用写 min_25 的第二步,而是直接每轮累加起来,就可以得到合数的贡献。
而质数的贡献已经知道是质数个数了。所以对于每次询问,我们可以直接将合数和质数的贡献加起来回答。
但是,\(g(a,0)=\sum_{i=2}^a i^k\),这个该怎么计算呢?
可以用第二类斯特林数来处理:
\sum_{i=1}^n i^k
&=\sum_{i=1}^n \sum_{j=1}^k {k\brace j} i^{\underline j}\\
&=\sum_{j=1}^k {k\brace j}\sum_{i=1}^n i^{\underline j}\\
&=\sum_{j=1}^k{k\brace j}\frac{(n+1)^{\underline{j+1}}}{j+1}
\end{aligned}\]
其中一步推导用到了 " 离散微积分 " 的东西,我不会了,可以参考[第二类斯特林数]自然数幂求和。
需要注意的是,由于这道题取模方法是自然溢出,因此不能求逆元。但由于求幂和的时候结果一定是整数,所以在\((n+1)^{\underline{j+1}}\)里面一定有一个\(j+1\)的倍数。我们可以先用余数把它找出来,除掉\(j+1\)之后再将剩下的乘起来即可。
代码
#include <map>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long LL;
typedef unsigned int ui;
const int MAXN = 1e5 + 5, MAXK = 55;
template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
}
template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
}
map<int, ui> mp;
ui G[MAXN << 1], g1[MAXN << 1], gk[MAXN << 1];
ui ps[MAXN], pks[MAXN], pk[MAXN];
ui S[MAXK][MAXK];
int val[MAXN << 1];
int id1[MAXN], id2[MAXN];
int phi[MAXN], prime[MAXN], pn;
int N, K, s, cnt;
bool isPrime[MAXN];
int& ID( const int x ) { return x <= s ? id1[x] : id2[N / x]; }
ui qkpow( ui base, int indx )
{
ui ret = 1;
while( indx )
{
if( indx & 1 ) ret *= base;
base *= base, indx >>= 1;
}
return ret;
}
void EulerSieve( const int siz )
{
phi[1] = 1, isPrime[1] = true;
for( int i = 2 ; i <= siz ; i ++ )
{
if( ! isPrime[i] ) prime[++ pn] = i, phi[i] = i - 1;
for( int j = 1 ; j <= pn && 1ll * i * prime[j] <= siz ; j ++ )
{
isPrime[i * prime[j]] = true;
if( ! ( i % prime[j] ) ) { phi[i * prime[j]] = phi[i] * prime[j]; break; }
phi[i * prime[j]] = phi[i] * ( prime[j] - 1 );
}
}
for( int i = 1 ; i <= pn ; i ++ ) pks[i] = pks[i - 1] + ( pk[i] = qkpow( prime[i], K ) );
for( int i = 1 ; i <= siz ; i ++ ) ps[i] = ps[i - 1] + phi[i];
}
ui getS( const int a )
{
ui ret = 0, t;
for( int i = 1, tmp ; i <= K ; i ++ )
{
tmp = ( a + 1 ) % ( i + 1 ), t = S[K][i];
for( int j = 1 ; j <= tmp ; j ++ ) t *= ( a - j + 2 );
t *= ( a - tmp + 1 ) / ( i + 1 );
for( int j = tmp + 2 ; j <= i + 1 ; j ++ ) t *= ( a - j + 2 );
ret += t;
}
return ret;
}
ui SPhi( const int n )
{
if( n <= s ) return ps[n];
if( mp[n] ) return mp[n];
ui ret;
if( n & 1 ) ret = ( ui ) ( n + 1 ) / 2 * n;
else ret = ( ui ) n / 2 * ( n + 1 );
for( int l = 2, r ; l <= n ; l = r + 1 )
{
r = n / ( n / l );
ret -= ( r - l + 1 ) * SPhi( n / l );
}
return mp[n] = ret;
}
int main()
{
read( N ), read( K );
s = sqrt( N );
EulerSieve( s );
for( int i = 1 ; i <= K ; i ++ ) S[i][i] = 1, S[i][0] = 0;
for( int i = 2 ; i <= K ; i ++ )
for( int j = 1 ; j <= K ; j ++ )
S[i][j] = S[i - 1][j - 1] + ( ui ) j * S[i - 1][j];
for( int l = 1, r, v ; l <= N ; l = r + 1 )
{
r = N / ( v = N / l ), val[++ cnt] = v;
g1[ID( v ) = cnt] = v - 1, gk[cnt] = getS( v ) - 1;
}
for( int j = 1, k ; j <= pn ; j ++ )
for( int i = 1 ; i <= cnt && 1ll * prime[j] * prime[j] <= val[i] ; i ++ )
{
k = ID( val[i] / prime[j] );
g1[i] -= g1[k] - ( j - 1 );
gk[i] -= ( ui ) pk[j] * ( gk[k] - pks[j - 1] );
G[i] += gk[k] - pks[j - 1];
}
ui ans = 0, pre = 0, nxt;
for( int l = 2, r, v ; l <= N ; l = r + 1 )
{
r = N / ( v = N / l );
nxt = G[ID( l )] + g1[ID( l )];
ans += ( ui ) ( 2u * SPhi( v ) - 1 ) * ( nxt - pre ), pre = nxt;
}
write( ans ), putchar( '\n' );
return 0;
}
[51nod 1847]奇怪的数学题的更多相关文章
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- 【51nod 1847】奇怪的数学题
题目描述 给出 N,K ,请计算下面这个式子: \(∑_{i=1}^N∑_{j=1}^Nsgcd(i,j)^k\) 其中,sgcd(i, j)表示(i, j)的所有公约数中第二大的,特殊地,如果gcd ...
- 【51nod 1874】 奇怪的数学题
题目 求 \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 首先这个次大公约数显然就是\(gcd\)除一下最小质因子了 于是 \[\sum_{i=1}^n\sum_{j= ...
- 51nod 1965 奇怪的式子——min_25筛
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 考虑 \( \prod_{i=1}^{n}\sigma_0^i \) \ ...
- [51nod1847]奇怪的数学题
description 51nod 求\[\sum_{i=1}^{n}\sum_{j=1}^{n}sgcd(i,j)^k\]其中\(sgcd(i,j)\)表示\(i,j\)的次大公约数,如果\(gcd ...
- 51nod 1965 奇怪的式子 —— min_25筛
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 推式子就同这里:https://www.cnblogs.com/yoyo ...
- 【51NOD1847】奇怪的数学题 min_25筛
题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\) ...
- 【51nod1847】 奇怪的数学题
就当我是 A 了此题吧... 首先预备知识有点多(因为题目要处理的东西都挺毒瘤): 杜教筛运用(当然你可以用其他筛?) 第二类斯特林数相关定理 下降阶乘幂相关定理 min25 筛运用 好了可以关掉本题 ...
- 【51Nod1847】奇怪的数学题
记\(f(x)=\)\(x\)的次大因数,那么\(sgcd(i,j)=f(gcd(i,j))\). 下面来推式子: \[ \begin{aligned} \sum_{i=1}^n\sum_{j=1 ...
随机推荐
- 流复制-pg_start_backup(带自定义表空间)
一.准备slave库 archive_mode = on ---开启归档模式 archive_command = 'test ! -f /mysqldata/pg/archive_active/%f ...
- E. Alternating Tree 树点分治|树形DP
题意:给你一颗树,然后这颗树有n*n条路径,a->b和b->a算是一条,然后路径的权值是 vi*(-1)^(i+1) 注意是点有权值. 从上头往下考虑是点分治,从下向上考虑就是树形DP, ...
- git rebase 还是 merge的使用场景最通俗的解释
什么是 rebase? git rebase 你其实可以把它理解成是“重新设置基线”,将你的当前分支重新设置开始点.这个时候才能知道你当前分支于你需要比较的分支之间的差异. 原理很简单:rebase需 ...
- Higher-Order Functions Fundamentals
Higher-Order Functions A function that accepts and/or returns another function is called a higher-or ...
- 【转】Mac系统常用快捷键大全
Mac系统常用快捷键大全 通用 Command是Mac里最重要的修饰键,在大多数情况下相当于Windows下的Ctrl.所以以下最基本操作很好理解: Command + Z 撤销 Command + ...
- Python可变对象和不可变对象
Python中一切皆对象,每个对象都有其唯一的id,对应的类型和值,其中id指的是对象在内存中的位置.根据对象的值是否可修改分为可变对象和不可变对象.其中, 不可对象包括:数字,字符串,tuple 可 ...
- SQL server数据库的密码策略与登录失败锁定策略
SQL server数据库本身没有密码复杂度策略设置,它是使用Windows操作系统的校验函数来校验账户密码的,所以查看SQL server数据库密码复杂度需要结合操作系统本地安全策略的密码策略来看. ...
- JS轮播图带序号小点和左右按钮
轮播图作为前端比较简易的动画,使用非常频繁,这里记录以便使用 此轮播图为最简易自动播放,非无缝,但有按钮,有序号跳转小点 想看全套轮播图可以查看我的分类轮播图全套 html布局 <div sty ...
- 替换Java WEB工程文件的指定字符串
package com.utils; import java.io.BufferedReader;import java.io.File;import java.io.FileFilter;impor ...
- 【Java8新特性】Stream API有哪些中间操作?看完你也可以吊打面试官!!
写在前面 在上一篇<[Java8新特性]面试官问我:Java8中创建Stream流有哪几种方式?>中,一名读者去面试被面试官暴虐!归根结底,那哥儿们还是对Java8的新特性不是很了解呀!那 ...