环境:CDH5.13.3  spark2.3

在提交任务之后,发现executor运行少量几台nodemanager,而其他nodemanager没有executor分配。

测试环境通过spark-shell模拟如下:

第一次尝试分配6个exeutor,具体如下

spark2-shell \
--driver-memory 1G \
--executor-memory 2G \
--num-executors 6 \
--executor-cores 3

结果:container全部分布在同一个节点上,其他节点没有。

第二次尝试分配20个executor,具体如下

spark2-shell \
--driver-memory 1G \
--executor-memory 2G \
--num-executors 20 \
--executor-cores 3

结果:container分布在其中两个节点上,其中一个节点上有11个,另外一个有9个。

spark on yarn实际的资源调度是由yarn来实现的,与standalone不同,目前环境yarn调度策略为公平调度,即FairScheduler,而这种情况是由公平调度中的一个参数有关:

<property>
<name>yarn.scheduler.fair.assignmultiple</name>
<value>true</value>
<discription>whether to allow multiple container assignments in one heratbeat defaults to false</discription>
</property>
在一次心跳请求中,是否分配多个container,CDH5.13.3默认设置为true。原生hadoop默认是false

<property>
<name>yarn.scheduler.fair.max.assign</name>
<value>-1</value>
</property>
如果上面设置的允许一次分配多个container,那么最多分配多少个,默认无限制。根据实际资源情况

将yarn.scheduler.fair.assignmultiple设置为false,再测试如下:

spark2-shell \
--driver-memory 1G \
--executor-memory 2G \
--num-executors 6 \
--executor-cores 3

如果在生产环境下,spark任务的executor数量和内存都相对要高很多,所以这种情况会相对有所缓解,具体根据实际情况确定是否需要调整。


Yarn 的三种资源分配方式

FIFO Scheduler

如果没有配置策略的话,所有的任务都提交到一个 default 队列,根据它们的提交顺序执行。富裕资源就执行任务,若资源不富裕就等待前面的任务执行完毕后释放资源,这就是 FIFO Scheduler 先入先出的分配方式。

如图所示,在 Job1 提交时占用了所有的资源,不久后 Job2提交了,但是此时系统中已经没有资源可以分配给它了。加入 Job1 是一个大任务,那么 Job2 就只能等待一段很长的时间才能获得执行的资源。所以先入先出的分配方式存在一个问题就是大任务会占用很多资源,造成后面的小任务等待时间太长而饿死,因此一般不使用这个默认配置。

Capacity Scheduler

Capacity Scheduler 是一种多租户、弹性的分配方式。每个租户一个队列,每个队列可以配置能使用的资源上限与下限(譬如 50%,达到这个上限后即使其他的资源空置着,也不可使用),通过配置可以令队列至少有资源下限配置的资源可使用

图中队列 A 和队列 B 分配了相互独立的资源。Job1 提交给队列 A 执行,它只能使用队列 A 的资源。接着 Job2 提交给了队列B 就不必等待 Job1 释放资源了。这样就可以将大任务和小任务分配在两个队列中,这两个队列的资源相互独立,就不会造成小任务饿死的情况了。

Fair Scheduler

Fair Scheduler 是一种公平的分配方式,所谓的公平就是集群会尽可能地按配置的比例分配资源给队列。

图中 Job1 提交给队列 A,它占用了集群的所有资源。接着 Job2 提交给了队列 B,这时 Job1 就需要释放它的一半的资源给队列 A 中的 Job2 使用。接着 Job3 也提交给了队列 B,这个时候 Job2 如果还未执行完毕的话也必须释放一半的资源给 Job3。这就是公平的分配方式,在队列范围内所有任务享用到的资源都是均分的。

spark on yarn container分配极端倾斜的更多相关文章

  1. Spark On YARN内存分配

    本文转自:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 此文解决了Spark ...

  2. spark on yarn 内存分配

    Spark On YARN内存分配 本文主要了解Spark On YARN部署模式下的内存分配情况,因为没有深入研究Spark的源代码,所以只能根据日志去看相关的源代码,从而了解“为什么会这样,为什么 ...

  3. Spark记录-Spark On YARN内存分配(转载)

    Spark On YARN内存分配(转载) 说明 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client模式.yarn-cluster模式. ...

  4. spark on yarn模式下内存资源管理(笔记2)

    1.spark 2.2内存占用计算公式 https://blog.csdn.net/lingbo229/article/details/80914283 2.spark on yarn内存分配** 本 ...

  5. Spark on Yarn:任务提交参数配置

    当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...

  6. 【原创】大数据基础之Spark(2)Spark on Yarn:container memory allocation容器内存分配

    spark 2.1.1 最近spark任务(spark on yarn)有一个报错 Diagnostics: Container [pid=5901,containerID=container_154 ...

  7. spark on yarn模式下内存资源管理(笔记1)

    问题:1. spark中yarn集群资源管理器,container资源容器与集群各节点node,spark应用(application),spark作业(job),阶段(stage),任务(task) ...

  8. spark调优篇-Spark ON Yarn 内存管理(汇总)

    本文旨在解析 spark on Yarn 的内存管理,使得 spark 调优思路更加清晰 内存相关参数 spark 是基于内存的计算,spark 调优大部分是针对内存的,了解 spark 内存参数有也 ...

  9. Spark on YARN两种运行模式介绍

    本文出自:Spark on YARN两种运行模式介绍http://www.aboutyun.com/thread-12294-1-1.html(出处: about云开发)   问题导读 1.Spark ...

随机推荐

  1. ANSYS 瞬态热分析---零件在水中冷却

    目录 1. 案例 2. APDL分析 1. 案例 一个温度为300℃的铜环和一个温度为200℃的铁环,放置到22℃的水中进行淬火.水桶为铁质的圆形.分析中忽略水的流动. 材料参数 热性能 铜 铁 水 ...

  2. C++ STL之集合set的使⽤

    写在最前面,本文摘录于柳生笔记: set是集合,一个set里面个元素各不相同的,而且set会按照元素从小到大的进行排序,一下是set的常用方法:

  3. 【JQuery 选择器】 案例

    1.查找以id的某个字段开头的元素 setTimeout(function () { $("a[id^='menu_']").each(function () { $(this). ...

  4. Linux服务器yum安装mysql

    阿里云Linux 服务器安装mysql 可以用rpm 和yum 方式安装,我这次安装是采用yum方式安装 请直接复制以下链接,看安装步骤 https://www.cnblogs.com/nzplear ...

  5. vue 组件,以及组件的复用

    有时候代码的某一模块可能会经常使用到,那么完全可以把这一模块抽取出来,封装为一个组件,哪里需要用到的时候只需把模块调用即可 .参考vue官方 https://cn.vuejs.org/v2/guide ...

  6. [Unity] Shader Graph Error 当前渲染管道与此主节点不兼容(The current render pipeline is not compatible with this master node)

    Shader Graph Error  : The current render pipeline is not compatible with this master node 问题产生环境: Un ...

  7. CSS的响应式布局

    响应式布局是什么 它是相对于固定像素大小的网页而言的,顾名思义,响应式布局就是网页能够响应各种各样不同分辨率大小的设备,能够将网页很好的呈献给用户. 如何实现响应式布局? 1.CSS3@media查询 ...

  8. IIS7和IIS8环境下 ThinkPHP专用URL Rewrite伪静态规则

      这是适用于IIS7,IIS7.5,IIS8.0及以上的ThinkPHP的伪静态规则,把以下代码保存成web.config文件,放到FTP的web目录内即可. <?xml version=&q ...

  9. Flask - 性能分析(Profiling,profiler,profile)

    1. 疑问 @app.cli.command() @click.option('--length', default=25, help='Number of functions to include ...

  10. ios中时间倒计时

    博客地址 https://github.com/sundayios/SQCountTimeDown.git