树:连通且不含圈的无向图称为树。常用T表示。树中的边称为树枝,树中度为1的顶点称为树叶。

生成树:若T是包含图G的全部顶点的子图,它又是树,则称T是G的生成树。

最小生成树:设T=(V,E1)是赋权图G=(V,E)的一棵生成树,称T中全部边上的权数之和为生成树的权,记为w(T),即w(T)=Σw(e)。如果生成树T*的权w(T*)是G的所有生成树的权最小者,则称T*是G的最优树,即w(T*)=Σmin{w(T)}.

在许多实际问题中,如在许多城市间建立公路网、输电网或通信网,都可以归结为赋权图的最优树问题。

图论中最有树的求解方法通常有两种算法:

Krukal算法和Prim算法

这里利用LINGO求解最优树。

问题1 有10个城镇,城镇1处有一条河流,现需要从各城镇之间铺设管道,使城镇1处的水可以输送到个城镇,求铺设管道最少的设计方式。

!最优树的LINGO程序;
model:
sets:
point/1..10/:u;
link(point,point):d,x;
endsets
data:
!各城镇之间的距离;
d=0,8,5,9,12,14,12,16,17,22,
8,0,9,15,16,8,11,18,14,22,
5,9,0,7,9,11,7,12,12,17,
9,15,7,0,3,17,10,7,15,15,
12,16,9,3,0,8,10,6,15,15,
14,8,11,17,8,0,9,14,8,16,
12,11,7,10,10,9,0,8,6,11,
16,18,12,7,6,14,8,0,11,11,
17,14,12,25,15,8,6,11,0,10,
22,22,17,15,15,16,11,11,10,0;
@text()=@writefor(link(i,j)|x(i,j)#GT#0:'x(',i,',',j,')=',x(i,j),'');
enddata
min=@sum(link(i,j)|i#ne#j:d(i,j)*x(i,j));
n=@size(point);
@sum(point(j)|j#gt#1:x(1,j))>=1;
@for(point(i)|i#ne#1:@sum(point(j)|j#ne#i:x(j,i))=1);
@for(link(i,j):@BIN(x(i,j)));
@for(link(i,j)|i#ne#j:u(i)-u(j)+n*x(i,j)<=n-1);!不构成圈;
end

  结果为:

x(1,2)=1 x(1,3)=1 x(3,4)=1 x(3,7)=1 x(4,5)=1 x(5,6)=1 x(5,8)=1 x(7,9)=1 x(9,10)=1

原文链接:https://www.icourse163.org/

图论中最优树问题的LINGO求解的更多相关文章

  1. P中值选址问题的整数规划求解

    P中值选址问题的整数规划求解 一 .P-中值问题 p-中值选址问题是一个常见的选址问题. 问题是给定I个需求结点和J个待选设施地点, 要求选择p个地点建立设施, 使得运输成本最低. 下面是个英文的问题 ...

  2. 图论中TSP问题的LINGO求解与应用

    巡回旅行商问题(Traveling Salesman Problem,TSP),也称为货郎担问题.该问题可简单描述为走遍n个城市的最短路.几十年来,出现了很多近似优化算法.如近邻法.贪心算法.最近插入 ...

  3. Tarjan在图论中的应用(三)——用Tarjan来求解2-SAT

    前言 \(2-SAT\)的解法不止一种(例如暴搜?),但最高效的应该还是\(Tarjan\). 说来其实我早就写过用\(Tarjan\)求解\(2-SAT\)的题目了(就是这道题:[2019.8.14 ...

  4. Lingo求解线性规划案例2——多阶段投资问题

     凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 某公司现有资金30万元可用于投资,5年内有下列方案可供采纳:   1号方案:在年初投资1元,2年后可收回1. ...

  5. 用Lingo求解线性规划问题

    第一步:输入目标条件和约束条件.每行以分号隔开.然后点击工具栏上的Solve按钮,或Lingo菜单下的Solve子菜单. 第二步:检查report中的结果. 默认情况下,Lingo不进行灵敏度分析. ...

  6. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  7. Prim算法和Kruskal算法(图论中的最小生成树算法)

    最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...

  8. 图论中DFS与BFS的区别、用法、详解…

    DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...

  9. 图论中DFS与BFS的区别、用法、详解?

    DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...

随机推荐

  1. C++ 检测物理内存以及磁盘空间

    BOOL CheckResource() { MEMORYSTATUSEX statex; statex.dwLength = sizeof (statex); GlobalMemoryStatusE ...

  2. Swift Json解析与model互转

    Json的解码与编码操作,这里使用swift自带的类JSONDecoder 和 JSONEncoder 1.基础处理 如果你的 JSON 数据结构和你使用的 Model 对象结构一致的话,那么解析过程 ...

  3. hive表字段注释显示乱码问题

    创建了一张hive表,对字段增加了注释,比如comment '注释内容' 之类的,但是在hive client查看时候却是乱码 比如: create table test_ultraedit ( id ...

  4. Git提交出现error: src refspec master does not match any的问题

    在本地与远程分别新建了一个仓库并且关联后,想要把本地的文件提交到github上面, 输入下方命令后没有成功,而是出现了报错:error: src refspec master does not mat ...

  5. SpringMVC:提交日期类型报400错误解决方法

    方法1:可以使用@ControllerAdvice增强Controller @ControllerAdvice public class BaseControllerAdvice { // 初始化绑定 ...

  6. hdu 1257 最少拦截系统 求连续递减子序列个数 (理解二分)

    最少拦截系统 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  7. 【Vue中的坑】路由相同参数不同无法触发路由

    场景: vue实现导航栏,二级导航栏跳转到相同页面,通过参数来实现到该页面后,根据参数来滚动到对应到位置 网上的解决方法: 通常情况下我们喜欢设置keepAlive 包裹 router-view &l ...

  8. RFX2401C与RFX2402E的区别

    随着科技的发展,射频设备也慢慢的普及,射频放大器在射频设备中起着非常重要的作用.为了能获得足够大的距离,必须都要外加射频信号放大器. 射频信号放大器简称 “PA”.PA主流应用主要有ZigBee .无 ...

  9. oracle 的存储过程

    -----推荐视频    https://ke.qq.com/webcourse/index.html#course_id=292495&term_id=100346599&taid= ...

  10. matlab中自带的sobol的函数提供的sobol序列

    clc; clear all; close all; M=;% 维度,几个参数 nPop=; VarMin=[0.6, 0.10, 0.002, 0.02, 0.17, 0.0, 0.17, 0.0, ...