图论中最优树问题的LINGO求解
树:连通且不含圈的无向图称为树。常用T表示。树中的边称为树枝,树中度为1的顶点称为树叶。
生成树:若T是包含图G的全部顶点的子图,它又是树,则称T是G的生成树。
最小生成树:设T=(V,E1)是赋权图G=(V,E)的一棵生成树,称T中全部边上的权数之和为生成树的权,记为w(T),即w(T)=Σw(e)。如果生成树T*的权w(T*)是G的所有生成树的权最小者,则称T*是G的最优树,即w(T*)=Σmin{w(T)}.
在许多实际问题中,如在许多城市间建立公路网、输电网或通信网,都可以归结为赋权图的最优树问题。
图论中最有树的求解方法通常有两种算法:
Krukal算法和Prim算法
这里利用LINGO求解最优树。

问题1 有10个城镇,城镇1处有一条河流,现需要从各城镇之间铺设管道,使城镇1处的水可以输送到个城镇,求铺设管道最少的设计方式。
!最优树的LINGO程序;
model:
sets:
point/1..10/:u;
link(point,point):d,x;
endsets
data:
!各城镇之间的距离;
d=0,8,5,9,12,14,12,16,17,22,
8,0,9,15,16,8,11,18,14,22,
5,9,0,7,9,11,7,12,12,17,
9,15,7,0,3,17,10,7,15,15,
12,16,9,3,0,8,10,6,15,15,
14,8,11,17,8,0,9,14,8,16,
12,11,7,10,10,9,0,8,6,11,
16,18,12,7,6,14,8,0,11,11,
17,14,12,25,15,8,6,11,0,10,
22,22,17,15,15,16,11,11,10,0;
@text()=@writefor(link(i,j)|x(i,j)#GT#0:'x(',i,',',j,')=',x(i,j),'');
enddata
min=@sum(link(i,j)|i#ne#j:d(i,j)*x(i,j));
n=@size(point);
@sum(point(j)|j#gt#1:x(1,j))>=1;
@for(point(i)|i#ne#1:@sum(point(j)|j#ne#i:x(j,i))=1);
@for(link(i,j):@BIN(x(i,j)));
@for(link(i,j)|i#ne#j:u(i)-u(j)+n*x(i,j)<=n-1);!不构成圈;
end
结果为:
x(1,2)=1 x(1,3)=1 x(3,4)=1 x(3,7)=1 x(4,5)=1 x(5,6)=1 x(5,8)=1 x(7,9)=1 x(9,10)=1
原文链接:https://www.icourse163.org/
图论中最优树问题的LINGO求解的更多相关文章
- P中值选址问题的整数规划求解
P中值选址问题的整数规划求解 一 .P-中值问题 p-中值选址问题是一个常见的选址问题. 问题是给定I个需求结点和J个待选设施地点, 要求选择p个地点建立设施, 使得运输成本最低. 下面是个英文的问题 ...
- 图论中TSP问题的LINGO求解与应用
巡回旅行商问题(Traveling Salesman Problem,TSP),也称为货郎担问题.该问题可简单描述为走遍n个城市的最短路.几十年来,出现了很多近似优化算法.如近邻法.贪心算法.最近插入 ...
- Tarjan在图论中的应用(三)——用Tarjan来求解2-SAT
前言 \(2-SAT\)的解法不止一种(例如暴搜?),但最高效的应该还是\(Tarjan\). 说来其实我早就写过用\(Tarjan\)求解\(2-SAT\)的题目了(就是这道题:[2019.8.14 ...
- Lingo求解线性规划案例2——多阶段投资问题
凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 某公司现有资金30万元可用于投资,5年内有下列方案可供采纳: 1号方案:在年初投资1元,2年后可收回1. ...
- 用Lingo求解线性规划问题
第一步:输入目标条件和约束条件.每行以分号隔开.然后点击工具栏上的Solve按钮,或Lingo菜单下的Solve子菜单. 第二步:检查report中的结果. 默认情况下,Lingo不进行灵敏度分析. ...
- 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解
本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...
- Prim算法和Kruskal算法(图论中的最小生成树算法)
最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...
- 图论中DFS与BFS的区别、用法、详解…
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 图论中DFS与BFS的区别、用法、详解?
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
随机推荐
- mfc WebBrowser打开本地网页
本地路径要用file协议,例子:file:///c:/abc/def.html注意点:file:后面是3个正斜杠,路径中用正斜杠(不是标准的反斜杠).如果你觉得IE地址栏支持标准的路径写法,那么你就错 ...
- MongoDB 初始化数据同步
MongoDB初始化数据同步: 副本集中的成员启动之后,就会检查自身的状态,确定是否可以从某个成员那里进行同步.如果不行的话,尝试从其他成员那里进行完整的数据复制. 这个过程就是初始化同步(initi ...
- Python的一些常用知识
1.How to force urllib2 not to use a proxy Here is an example to remove proxy settings for all reques ...
- xml配置文件解释
XML 指可扩展标记语言(EXtensible Markup Language) xmlns:是指XML命名空间 ( XML Namespace ) XSD是指XML结构定义 ( XML Schema ...
- bzoj 3522: [Poi2014]Hotel
呵呵,一开始天真的我以为求个 西格玛 C(??,3)就好了.. (题解:比枚举2个数的再多一个,,一样搞) #include <bits/stdc++.h> #define LL long ...
- 设置gvim的字体大小
1.临时设置: 进入命令行模式输入: set guifont=Courier\ New:h10 2.永久设置: 打开安装目录找到defaults.vim在最后一行输入: set guifont=Cou ...
- JAVA中的指针
不同于CPP,JAVA中不需要程序员对指针进行操作.不过,这不代表JAVA没有指针,事实上,JAVA的指针操作都被底层代码封装了.笔者在初学Java时,虽然就了解了形参,实参,StringBuffer ...
- js基础学习之-js对象的属性
Js属性 1. 设置属性 1) 对象. 2) 对象[‘属性名’] 3) GetAttribute函数 2. 获取属性 1) 变量=对象. 2) 变量=对象[‘属性名’] 3) GetAt ...
- Web基础之Maven
Web基础之Maven Maven是一个优秀的项目管理工具,可以很轻松的管理项目. POM和LifeCycle POM:Project Object Model.也就是项目模型,简单来说就是对项目进行 ...
- UVA - 11105 Semi-prime H-numbers(H-半素数)
题意:所有形如4n+1(n为非负整数)的数叫H数.定义1是唯一的单位H数,H素数是指本身不是1,且不能写成两个不是1的H数的乘积.H-半素数是指能写成两个H素数的乘积的H数(这两个数可以相同也可以不同 ...