题意:求f(n)=1/1+1/2+1/3+1/4…1/n   (1 ≤ n ≤ 108).,精确到10-8    (原题在文末)

知识点:

     调和级数(即f(n))至今没有一个完全正确的公式,但欧拉给出过一个近似公式:(n很大时)

      f(n)≈ln(n)+C+1/2*n

      欧拉常数值:C≈0.57721566490153286060651209

      c++ math库中,log即为ln。

题解:

公式:f(n)=ln(n)+C+1/(2*n);

n很小时直接求,此时公式不是很准。

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const double r=0.57721566490153286060651209; //欧拉常数
double a[10000]; int main()
{
a[1]=1;
for (int i=2;i<10000;i++)
{
a[i]=a[i-1]+1.0/i;
}
int n;
cin>>n;
for (int kase=1;kase<=n;kase++)
{
int n;
cin>>n;
if (n<10000)
{
printf("Case %d: %.10lf\n",kase,a[n]);
}
else
{
double a=log(n)+r+1.0/(2*n);
//double a=log(n+1)+r;
printf("Case %d: %.10lf\n",kase,a);
}
}
return 0;
}

其实可以打表水过,毕竟公式记不住是硬伤啊。。

10e8全打表必定MLE,而每40个数记录一个结果,即分别记录1/40,1/80,1/120,...,1/10e8,这样对于输入的每个n,最多只需执行39次运算,大大节省了时间,空间上也够了。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath> using namespace std; const int maxn = 2500001;
double a[maxn] = {0.0, 1.0}; int main()
{
int t, n, ca = 1;
double s = 1.0;
for(int i = 2; i < 100000001; i++)
{
s += (1.0 / i);
if(i % 40 == 0) a[i/40] = s;
}
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
int x = n / 40;
s = a[x];
for(int i = 40 * x + 1; i <= n; i++) s += (1.0 / i);
printf("Case %d: %.10lf\n", ca++, s);
}
return 0;
}

Harmonic Number

Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Submit Status

Description

In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:

Hn=1/1+1/2+1/3+1/4…1/n

In this problem, you are given n, you have to find Hn.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 108).

Output

For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.

Sample Input

12

1

2

3

4

5

6

7

8

9

90000000

99999999

100000000

Sample Output

Case 1: 1

Case 2: 1.5

Case 3: 1.8333333333

Case 4: 2.0833333333

Case 5: 2.2833333333

Case 6: 2.450

Case 7: 2.5928571429

Case 8: 2.7178571429

Case 9: 2.8289682540

Case 10: 18.8925358988

Case 11: 18.9978964039

Case 12: 18.9978964139

Harmonic Number(调和级数+欧拉常数)的更多相关文章

  1. C - Harmonic Number(调和级数+欧拉常数)

    In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers ...

  2. LightOJ 1234 Harmonic Number 调和级数部分和

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1234 Sample Input Sample Output Case : Case : ...

  3. Harmonic Number(调和级数+欧拉常数)

    In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers ...

  4. Harmonic Number (调和级数+欧拉常数)题解

    Harmonic Number In mathematics, the nth harmonic number is the sum of the reciprocals of the first n ...

  5. Harmonic Number 求Hn; Hn = 1 + 1/2 + 1/3 + ... + 1/n; (n<=1e8) T<=1e4; 精确到1e-8; 打表或者调和级数

    /** 题目:Harmonic Number 链接:https://vjudge.net/contest/154246#problem/I 题意:求Hn: Hn = 1 + 1/2 + 1/3 + . ...

  6. Harmonic Number (LightOJ 1234)(调和级数 或者 区块储存答案)

    题解:隔一段数字存一个答案,在查询时,只要找到距离n最近而且小于n的存答案值,再把剩余的暴力跑一遍就可以. #include <bits/stdc++.h> using namespace ...

  7. LightOJ - 1234 LightOJ - 1245 Harmonic Number(欧拉系数+调和级数)

    Harmonic Number In mathematics, the nth harmonic number is the sum of the reciprocals of the first n ...

  8. LightOJ 1234 Harmonic Number(打表 + 技巧)

    http://lightoj.com/volume_showproblem.php?problem=1234 Harmonic Number Time Limit:3000MS     Memory ...

  9. LightOJ 1234 Harmonic Number

    D - Harmonic Number Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu S ...

随机推荐

  1. 【每日一linux命令3】参数(或称选项)顺序

    一般除了特殊情况,参数是没有顺序的.举例而言,输入"–a –v"与输入"–v –a"以及"–av" 的执行效果是相同的.但若该参数后指定了要 ...

  2. C语言 · 乘法表

    问题描述 输出九九乘法表. 输出格式 输出格式见下面的样例.乘号用"*"表示. 样例输出 下面给出输出的前几行:1*1=12*1=2 2*2=43*1=3 3*2=6 3*3=94 ...

  3. solr_架构案例【京东站内搜索】(附程序源代码)

    注意事项:首先要保证部署solr服务的Tomcat容器和检索solr服务中数据的Tomcat容器,它们的端口号不能发生冲突,否则web程序是不可能运行起来的. 一:solr服务的端口号.我这里的sol ...

  4. 1.初始Windows Server 2012 R2 Hyper-V + 系统安装详细

    干啥的?现在企业服务器都是分开的,比如图片服务器,数据库服务器,redis服务器等等,或多或少一个网站都会用到多个服务器,而服务器的成本很高,要是动不动采购几十台,公司绝对吃不消的,于是虚拟化技术出来 ...

  5. MVC Core 网站开发(Ninesky) 2.1、栏目的前台显示

    上次创建了栏目模型,这次主要做栏目的前台显示.涉及到数据存储层.业务逻辑层和Web层.用到了迁移,更新数据库和注入的一些内容. 一.添加数据存储层 1.添加Ninesky.DataLibrary(与上 ...

  6. Smarty的基本使用与总结

    含义: Smarty是PHP的一个引擎模板,可以更好的进行逻辑与显示的分离,即我们常说的MVC,这个引擎的作用就是将C分离出来. 环境需求:PHP5.2或者更高版本 我使用的环境是:PHP5.3,wi ...

  7. [WPF] Wait for a moment.

    一.控件介绍 在 WPF 中使用的等待控件,控件包括三种,普通的等待信息提示(WaitTip),进度条提示(WaitProgress),以及主程序覆盖的模拟时钟等待窗口(WaitClock),具体效果 ...

  8. 利用Select2优化@Html.ListBoxFor显示,学会用MultiSelectList

    最近需要用到多选框,Asp.Net MVC自带的@Html.ListBox或@Html.ListBoxFor的显示效果太差,于是找到了Select2进行优化,并正式了解了多选框的操作方法. 首先介绍多 ...

  9. input type='file'上传控件假样式

    采用bootstrap框架样式 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> &l ...

  10. iptables

    一.在服务器上打开 22.80.9011端口: iptables -A INPUT -p tcp --dport 9011 -j ACCEPT iptables -A OUTPUT -p tcp -- ...