【BZOJ 2154】Crash的数字表格
制杖了,,,求前缀和的时候$i×i$是int,然后当$i=10^7$时就喜闻乐见地爆int了,,,对拍之后查了一个下午的错才发现这个问题,,,最后枚举用的变量全都强行加上long long才A掉

#include<cstdio>
#include<cstring>
#include<algorithm>
#define read(x) x=getint()
using namespace std;
typedef long long LL;
const int p = 20101009;
const int N = 1E7 + 3;
int getint() {
int k = 0, fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - '0';
return k * fh;
}
bool np[N];
int prime[N], mu[N], s[N];
void shai(int n) {
mu[1] = 1; s[1] = 1; int num = 0;
for(int i = 2; i <= n; ++i) {
if (!np[i]) {
mu[i] = -1;
prime[++num] = i;
}
for(int j = 1; j <= num; ++j) {
int t = prime[j] * i;
if (t > n) break;
np[t] = 1;
if (i % prime[j] == 0) {mu[t] = 0; break;}
mu[t] = -mu[i];
}
s[i] = (s[i - 1] + (1LL * i * i * mu[i]) % p) % p;
}
}
LL sum(LL x, LL y) {return (((x * (x + 1) / 2) % p) * ((y * (y + 1) / 2) % p)) % p;}
LL F(LL x, LL y) {
LL re = 0;
for(int i = 1, la = 1; i <= x; i = la + 1) {
la = min(x / (x / i), y / (y / i));
re = (re + (s[la] - s[i - 1]) * sum(x / i, y / i) % p) % p;
}
return re;
}
int main() {
int n, m;
read(n); read(m);
if (n > m) swap(n, m);
shai(n); LL ret = 0;
for(LL d = 1, la = 1; d <= n; d = la + 1) {
la = min(n / (n / d), m / (m / d));
ret = (ret + (d + la) * (la - d + 1) / 2 % p * F(n / d, m / d) % p) % p;
}
printf("%lld", (ret + p) % p); return 0;
}
不知道该说些什么了......
【BZOJ 2154】Crash的数字表格的更多相关文章
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- Bzoj 2154: Crash的数字表格(积性函数)
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...
- bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【刷题】BZOJ 2154 Crash的数字表格
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- BZOJ 2154 Crash的数字表格
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2154 题意: 思路: i64 mou[N]; void init(int N){ ...
- ●BZOJ 2154 Crash的数字表格
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
随机推荐
- 2016-2017 CT S03E07: Codeforces Trainings Season 3 Episode 7 - HackerEarth Problems Compilation
B: 思路: 暴力,每两个判断一下; C: 思路: 容斥定理,先枚举脖子下面那个点和那个不可描述的点,算出所有的方案数,这里面有多的腿当成了脖子或者胳膊的,然后就再枚举这种情况把这些减去,又减多了; ...
- createDocumentFragment() 创建文档碎片节点
var aqiData = [ ["北京", 90], ["上海", 50], ["福州", 10], ["广州", 5 ...
- jvm虚拟机性能监控与故障处理工具
java开发人员肯定知道jdk的bin目录中有java.exe javac.exe这两个命令行工具,但并非所有程序员都了解过jdk的bin目录之中其他命令行的作用.jdk的工具,体积都比较小,这些命令 ...
- HTML 学习笔记 CSS(选择器3)
CSS 属性选择器 属性选择器可以根据元素的额属性以及属性值来选择元素 例子1 如果 你希望把包含title的所有元素变成红色 *[title] {color:red} 例子2 与上面类似 可以只对有 ...
- 10 Things Every Java Programmer Should Know about String
String in Java is very special class and most frequently used class as well. There are lot many thin ...
- Spring的反射机制和依赖注入
我们知道,Spring中大量使用了反射机制,那么究竟是什么地方使用了呢? spring的一大核心概念是注入, 但是,这存在的一个前提就是类是由spring管理起来的. 反射是根据className生成 ...
- ASP.NET整理:Cookie,Application,Session,页面生命周期
一.设置Cookie的2种方式 1. Repsonse.Cookie[“名”] = 值; 2. HttpCookie hcCookie = new HttpCookie(“名”,值); h ...
- 金旭亮老师的Scoekt编程摘要
Socket提供了众多的属性,还提供了SetSocketOption方法来设置各种选项,对.NET网络应用程序的数据通讯进行“微调”. Socket的功能出奇地强大,在.NET平台上,它支持以下 ...
- Linux 信号详解五(信号阻塞,信号未决)
信号在内核中的表示 执行信号的处理动作成为信号递达(Delivery),信号从产生到递达之间的状态称为信号未决(Pending).进程可以选择阻塞(Block)某个信号. 被阻塞的信号产生时将保持在未 ...
- 一道int与二进制加减题
int dis_data = 32769; if( dis_data > 0x7fff) dis_data -= 0xffff; printf("%d\n",dis_dat ...