本文英文原文出自这里, 这个博客里面的内容是Java开源, 分布式深度学习项目deeplearning4j的介绍学习文档.

简介:

一般来说, 神经网络常被用来做无监督学习, 分类, 以及回归. 也就是说, 神经网络可以帮助对未标记数据进行分组, 对数据进行分类, 或者在有监督训练之后输出连续的值. 典型的神经网络在分类方面的应用, 会在网络的最后一层使用逻辑回归分类器(之类)的将连续(continue)的值转换成为离散值如: 0/1, 比如, 给定一个人的身高, 体重, 以及年龄, 你可以给出它有心脏病或者没有心脏病的判断. 而真正的回归是将一组连续的输入映射到另一组连续的输出.

例如, 给定一座房子的房龄, 面积, 以及到一所好学校的距离, 你将对这座房子的价格进行预测: 这就是连续型输入映射到连续性输出. 这里面没有分类任务中的0/1, 而仅仅是将独立变量 x 映射到连续的输出y.

NN-Regression结构:

在上图中, x表示输入, 特征在网络前面的层进行前向传播, 很多x's与最后隐层的每个神经元相连接, 每个x将会乘上一个相应的权重w. 这些乘积之和再加上一个偏置, 被送到一个激活函数ReLU(=max(x,0)), 这个一个被广泛应用的激活函数, 它不会像sigmoid激活函数那样出现饱和. 对于每个隐层神经元,  ReLUctant输入一个激活值a, 在网络的输出节点, 计算这些激活值之和作为最后的输出. 也就是说, 利用神经网络来做回归将有一个输出节点, 而且这个节点仅是对前面节点的激活值进行相加. 得到的 ŷ就是由你所有的x映射得到的独立变量.

训练过程:

为了进行网络的反向传播以及网络的训练, 你可以简单地使用网络的输出ŷ与真实值y进行比较, 通过调整权重和偏置使得网络的error达到最小. 可以使用Root-means-squared-error(RMSE)作为loss函数.

可以使用Deeplearning4j来建立多层神经网络, 在网络的最后增加一个输出层, 具体的代码参考如下:

//Create output layer
.layer()
.nIn($NumberOfInputFeatures)
.nOut()
.activationFunction('identity')
.lossFunction(LossFunctions.LossFunction.RMSE)

其中, nOut输出层的神经元数目, nIn为特征向量的维度, 在上图中, 这应该设置为4, activationFunction应该被设置为'identity'.

我的问题:

  • 如果要输出多个值, 怎么做? 训练多个模型?
  • 还有没有其他的方式做回归?

[翻译]用神经网络做回归(Using Neural Networks With Regression)的更多相关文章

  1. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  2. 论文翻译:2018_Source localization using deep neural networks in a shallow water environment

    论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关 ...

  3. 深度神经网络入门教程Deep Neural Networks: A Getting Started Tutorial

    Deep Neural Networks are the more computationally powerful cousins to regular neural networks. Learn ...

  4. 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

    Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...

  5. 机器学习入门14 - 神经网络简介 (Introduction to Neural Networks)

    原文链接:https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/ 神经 ...

  6. 强化学习之二:Q-Learning原理及表与神经网络的实现(Q-Learning with Tables and Neural Networks)

    本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译.(This article is my personal translation for the tutor ...

  7. 卷积神经网络(Convolutional Neural Networks)CNN

     申明:本文非笔者原创,原文转载自:http://www.36dsj.com/archives/24006 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural ...

  8. 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...

  9. 利用Caffe做回归(regression)

    Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...

随机推荐

  1. volatile简介

    volatile简介 java语言提供了一种稍弱的内存同步机制,即volatile变量.用来确保将变量的更新操作通知到其它线程,保证了新值能立即同步到主内存,以及每次使用前立即从内存刷新.当变量声明为 ...

  2. bootstrap学习<三>打开模态窗体

    可以切换模态框(Modal)插件的隐藏内容: 通过 data 属性:在控制器元素(比如按钮或者链接)上设置属性 data-toggle="modal",同时设置 data-targ ...

  3. 如何在程序里模拟在cmd里用管理员权限运行一条指令

    转自csdn的yangw150,zhao4zhong1 转自http://www.cnblogs.com/del/archive/2008/02/13/1068229.html http://blog ...

  4. C++ 调用 java jni.h 的使用

    JNI c++ 调用 java ----------------------------------------------c++----------------------------------- ...

  5. anjularjs 路由

    在多视图单页面web应用中,angularjs使用路由‘#+标记’来区别不同的逻辑页面并将不同的页面绑定到对应的控制器上.通过一个简单的实例来深入理解: 1.index.html 主页面中插入代码: ...

  6. HEX格式数据转换成十六进制字符串

    /** * Hex格式数据转换成十六进制字符串 * @param src */ public void bytesToHexString(byte[] by){ StringBuilder strin ...

  7. Scrum2.0 项目基本完成

  8. 支持向量机(SVM)基础

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  9. JS特殊函数(Function()构造函数、函数直接量)区别介绍

    函数定义 函数是由这样的方式进行声明的:关键字 function.函数名.一组参数,以及置于括号中的待执行代码. 函数的构造语法有这三种: 1.function functionName(arg0, ...

  10. java之main

    Java中用户向系统传递参数的三种基本方式 main方法 在Java中,main()方法是Java应用程序的入口方法,也就是说,程序在运行的时候,第一个执行的方法就是main()方法,这个方法和其他的 ...