Palindrome Partitioning

Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.

For example, given s = "aab", Return

  [
["aa","b"],
["a","a","b"]
] 思想: 简单的深度优先搜索。
bool isPalindrome(string& s, int l, int r) {
while(l++ < r--)
if(s[l] != s[r]) return false;
return true;
}
class Solution {
public:
void dfs(string& s, vector<string>& vec2, size_t id) {
if(id == s.size()) {
vec.push_back(vec2);
return;
}
for(int end = id; end < s.size(); ++end) {
if(isPalindrome(s, id, end)) {
vec2.push_back(s.substr(id, end-id+1));
dfs(s, vec2, end+1);
vec2.pop_back();
}
}
}
vector<vector<string> > partition(string s) {
if(s == "") return vec;
vector<string> vec2;
dfs(s, vec2, 0);
return vec;
}
private:
vector<vector<string> > vec;
};

Palindrome Partitioning II

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab", Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

思想: 动态规划:

n = s.length();

Record[i] =                                 0                                          , ( i = n || isPalindrome(i, n-1))

min(n-1-i, Record[k]+1 ( isPalindrome(i, k) ) )        , otherwise

where i belong to interval [0, n].

class Solution {
public:
int minCut(string s) {
if(s == "" || s.size() == 1) return 0;
int n = s.size();
vector<vector<bool> > D(n, vector<bool>(n, false)); vector<int> record(n, 0);
for(int i = n-1; i >= 0; --i) {
record[i] = n-1-i;
for(int j = i; j < n; ++j) {
if(s[i] == s[j] && (j-i < 2 || D[i+1][j-1])) {
D[i][j] = true;
if(j == n-1) record[i] = 0;
else record[i] = min(record[i], record[j+1]+1);
}
}
}
return record[0];
}
};
												

19. Palindrome Partitioning && Palindrome Partitioning II (回文分割)的更多相关文章

  1. [LeetCode] 131. Palindrome Partitioning 回文分割

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  2. 【CF906E】Reverses(回文自动机,最小回文分割)

    题意:给定两个长度相等的仅由小写字母组成的串A和B,问在A中最少选择多少段互不相交的子串进行翻转能使A和B相同 len<=5e5 思路:构造新串S=a[1]b[1]a[2]b[2]...a[n] ...

  3. Palindrome Partitioning LightOJ - 1044(回文串最小分割数,O(n^2)预处理子串是否回文)

    题意:将一个字符串分割成最少的字符串,使得分割出的每个字符串都是回文串.输出最小的分割数. 方法(自己的):先O(n^2)(用某个点或某个空区间开始,每次向左右扩展各一个的方法)处理出所有子串是否回文 ...

  4. [Leetcode] palindrome partition ii 回文分区

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  5. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  6. [LeetCode] 267. Palindrome Permutation II 回文全排列 II

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  7. PAT A1136 A Delayed Palindrome (20 分)——回文,大整数

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  8. codeforces 486C Palindrome Transformation 贪心求构造回文

    点击打开链接 C. Palindrome Transformation time limit per test 1 second memory limit per test 256 megabytes ...

  9. HDU 4632 Palindrome subsequence(区间dp,回文串,字符处理)

    题目 参考自博客:http://blog.csdn.net/u011498819/article/details/38356675 题意:查找这样的子回文字符串(未必连续,但是有从左向右的顺序)个数. ...

  10. Palindrome - URAL - 1297(求回文串)

    题目大意:RT   分析:后缀数组求回文串,不得不说确实比较麻烦,尤其是再用线段数进行查询,需要注意的细节地方比较多,比赛实用性不高......不过练练手还是可以的.   线段数+后缀数组代码如下: ...

随机推荐

  1. 【Android】Android清除本地数据缓存代码

    最近做软件的时候,遇到了缓存的问题,在网上看到了这个文章,感觉不错.分享给大家看看 文章出处:http://www.cnblogs.com/rayray/p/3413673.html /* * 文 件 ...

  2. 图表控件的学习===》hightChart 和 Chartjs的使用

    hightChart : 比较旧的图表控件   商业需要授权 Chartjs 免费开源 刚开始使用了下 hightchart 然后参考示例 建了对应的参数配置的类, 也顺利的集合到后台动态传输.  后 ...

  3. 设置ubuntu12.04桌面版开机进入命令行模式

    1)命令:sudo gedit /etc/default/grub 找到GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" 将"quite ...

  4. jQueryUI之交互

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. Swift的文档注释

    官方文档地址:https://developer.apple.com/library/mac/documentation/Xcode/Reference/xcode_markup_formatting ...

  6. 对hbase的学习

    HBase,是Hadoop DataBase. 面向列的分布式数据库, 思想来源于Google的BigTable思想,它的目标是在廉价硬件构成的集群上管理超大规模的稀疏表. Hbase的物理结构 HB ...

  7. 【LeetCode OJ】Path Sum II

    Problem Link: http://oj.leetcode.com/problems/path-sum-ii/ The basic idea here is same to that of Pa ...

  8. WPF学习笔记——认识XAML

    Extensible Application Markup Language,XAML是一种声明性标记语言. 一.XAML语法概述 1,与XML类似,用尖括号标记元素 <StackPanel&g ...

  9. phalcon:跟踪sql语句

    在phalcon里有一个\Phalcon\Db\Profiler 类,这个类可以用来记录sql语句并计算消耗的时间.那么如何使用它呢? 手册里其实已经提供了方法,总结如下: 1.向$di里注册prof ...

  10. C#基础知识系列十(集合)

    前言 本节主要是来了解学习集合,以方便在程序编写时,什么地方该选用什么集合,让程序更健壮的运行起来.在学习了解集合之前,首先需要了解一些数据结构方面的知识.下面我们就先简单的来看一下数据结构. 数据结 ...