Energy based Model

the probability distribution (softmax function):

\[p(x)=\frac{\exp(-E(x))}{\sum\limits_x{\exp(-E(x))}}\]

when there are hidden units,

\[P(x)=\sum\limits_h{P(x,h)}=\frac{1}{\sum_x\exp(-E(x))}\sum\limits_h{\exp(-E(x,h))}\]

now, we define the free energy function:

\[F(x)=-\log \sum\limits_h \exp(-E(x,h))\]

so that,

\[\sum\limits_h \exp(-E(x,h))=-\exp( F(x))\]

now, we rewrite the probability distribution for simpilification:

\[P(x)=\frac{\exp(-F(x))}{\sum_x{\exp(-F(x))}}\]

then, we define the overall cost function:

\[\mathcal{L}(\theta,D)=-\frac{1}{N}\sum\limits_{x^{(i)} \in D}{\log p(x^{(i)})}\]

we firstly calculate the parcial gradient of $\log p(x)$ with respect to $\theta$:

\[-\log P(x)=F(x) + \log\left(\sum\limits_x{\exp(-F(x))}\right)\]

\[-\frac{\partial \log P(x)}{\partial \theta}=\frac{\partial F(x)}{\partial \theta}-\sum\limits_{\hat x}{p(\hat x)\frac{\partial F(\hat x)}{\partial \theta}}\]

note that, the gradient contains two terms, which is called the positive phase and the negative phase. The first term increase the probability of training data, and the second term decrease the probability of samples generated by the model.

It's difficult to determine this gradient analytically, as we can't calculate $E_P[\frac{\partial F(x)}{\partial \theta}]$. So we might estimate the expectation using sample method.

we would like elements $\tilde x$ of $\mathcal{N}$ to be sampled according to $P(\tilde x)$, where $\mathcal{N}$ is called negative particles.

Given that, the gradient can then be written as:

\[ - \frac{\partial \log p(x)}{\partial \theta}\approx \frac{\partial F(x)}{\partial \theta} - \frac{1}{|\mathcal{N}|} \sum\limits_{\tilde x \in \mathcal{N}}\frac{\partial F(\tilde x)}{\partial \theta}\]

RBM

the energy function $E(v,h)$ of RBM is defined as :

\[E(v,h)=-b'v-c'h-h'Wv\]

where

  • $W$ represents the weights connecting hidden and visble units.
  • $b,c$ are bias terms of visible and hidden layers respectively.

RBM Formula Deduction的更多相关文章

  1. Logistic Regression - Formula Deduction

    Sigmoid Function \[ \sigma(z)=\frac{1}{1+e^{(-z)}} \] feature: axial symmetry: \[ \sigma(z)+ \sigma( ...

  2. CBOW Model Formula Deduction

    Paper Reference: word2vec Parameter Learning Explained 1. One-word context Model In our setting, the ...

  3. redmine computed custom field formula tips

    项目中要用到Computed custom field插件,公式不知道怎么写,查了些资料,记录在这里. 1.http://apidock.com/ruby/Time/strftime 查看ruby的字 ...

  4. RBM阅读笔记

    RBM包含两个层,可见层(visble layer)和隐藏层(hidden layer).神经元之间的连接具有以下特点:层内无连接,层间全连接.RBM可以看做是一个二分图(神经元当做顶点,神经元之间的 ...

  5. 2-3. Using Type Deduction

    Type Deduction 发生在编译时期 可以对一般类型,自定义类型进行类型自推导 下面有两个例子: 1. Using auto with a class #include <iostrea ...

  6. salesforce 零基础开发入门学习(十五)salesforce中formula的使用(不含Date/Time)

    本文参考官方的formula介绍PDF:https://resources.docs.salesforce.com/200/latest/en-us/sfdc/pdf/salesforce_usefu ...

  7. Hibernate @Formula 注解方式

    1.Formula的作用 Formula的作用就是用一个查询语句动态的生成一个类的属性 就是一条select count(*)...构成的虚拟列,而不是存储在数据库里的一个字段.用比较标准的说法就是: ...

  8. Hibernate @Formula

    在使用Hibernate时经常会遇到实体类某个字段存的是code值而非我们最终想要的中文具体显示的值, 如果使用Hibernate的一对一关联这种,一个属性还好说,但是如果一个实体类里有多个字段都是需 ...

  9. Deep Learning 15:RBM的学习

    RBM是深度学习的核心,所以必须彻底清楚地理解RBM原理.推导及其训练方法 1.读学位论文“基于深度学习的人脸识别研究”: 对RBM.DBN的介绍比较详细,可以作为基础阅读,再去读英文论文. 2.RB ...

随机推荐

  1. meta标签大全

    meta标签大全 <!--     x-ua-compatible(浏览器兼容模式)     仅对IE8+以效     告诉浏览器以什么版本的IE的兼容模式来显示网页     <meta ...

  2. HTML5+JS 《五子飞》游戏实现(七)游戏试玩

    前面第一至第六章我们已经把<五子飞>游戏的基本工作都已经讲得差不多了,这一章主要是把所有的代码分享给大家,然后小伙伴们也可以玩一玩. 至于人机对战的我们放到后面讲进行分析. 试玩地址:ht ...

  3. C# WinForm应用程序降低系统内存占用方法

    这里整理了一些网上关于Winform如何降低系统内存占用的资料,供参考: 1.使用性能测试工具dotTrace 3.0,它能够计算出你程序中那些代码占用内存较多2.强制垃圾回收3.创建完对象实例后,记 ...

  4. 1014mysqldumpslow.pl简单分析慢日志 WINDOW平台

    转自http://www.th7.cn/db/mysql/201507/113998.shtml 要想运行mysqldumpslow.pl(这是perl程序),下载perl编译器.下载地址:http: ...

  5. java String.split()函数的用法分析

    java String.split()函数的用法分析 栏目:Java基础 作者:admin 日期:2015-04-06 评论:0 点击: 3,195 次 在java.lang包中有String.spl ...

  6. [转]Spring——jar包详解

    原文地址:http://my.oschina.net/huhaoren/blog/300856?p=1 spring.jar是包含有完整发布的单个jar包,spring.jar中包含除了 spring ...

  7. easyui-datagrid 报错:TypeError: col is null

    一般是由于设置的属性用到的列,如: idField:'aa', sortName:'bb' 等在 columns:[[{field:'cc',width:80,title:'列cc'}, {field ...

  8. 使用express4.X + jade + mongoose + underscore搭建个人电影网站

    (-。-;), 周末过得真是快啊,  很久以前就看到imooc上有个搭建个人电影网站一期 ,二期的视频, 这两周宅家里撸玩没事干, 我也学着搭了一个, 这些东西都是基础, 只要花点时间很好学的, no ...

  9. Eclipse SVN插件与TortoiseSVN的对应关系及下载链接

    Eclipse SVN 插件与TortoiseSVN对应关系 Eclipse 3.2/Callisto, 3.3/Europa, 3.4/Ganymede, 3.5/Galileo, 3.6/Heli ...

  10. maven打包忽略测试用例

    忽略单元测试失败: $ mvn test -Dmaven.test.failure.ignore=true 跳过单元测试: mvn install -Dmaven.test.skip=true 跳过测 ...