Given two strings, find the longest common subsequence (LCS).

Your code should return the length of LCS.

Clarification

Example

For "ABCD" and "EDCA", the LCS is "A" (or "D""C"), return 1.

For "ABCD" and "EACB", the LCS is "AC", return 2.

求两个字符串的最长公共子序列,用动态规划来解决。

初始化二维数组 f[A.length() + 1][B.length() + 1],    f[ i ][ j ]表示的是A的前i个字符配上前j个字符的最长公共子序列长度。

为什么不是f[A.length() ] [B.length() ]呢,因为代表的前i个或者前j个字符,是包括了0的情况。

初始值:f[ i ][ 0 ] = 0, f [ 0] [ j ] = 0, 因为和空字符串的公共子序列肯定是长度为0;

如果A的第i-1个字符等于B的第j - 1个字符,说明最长公共子序列长度加1

f[ i ][ j ]等于f[ i - 1] [ j - 1] + 1

如果A的第i-1个字符不等于B的第j - 1个字符

f[ i ][ j ]等于 max(f[ i - 1] [ j ] , f [ i ] [ j -  1] )

注意:

因为定义f [ i ] [ j ]的i 、 j并不是下标 而是subsequence的长度

所以长度为i的字符串最后一个字符 所在的下标是i-1

public class Solution {
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
public int longestCommonSubsequence(String A, String B) {
int m = A.length();
int n = B.length();
int[][] f = new int[m + 1][n + 1]; for (int i = 0; i < m; i++) {
f[i][0] = 0;
}
for (int j = 0; j < n; j++) {
f[0][j] = 0;
}
for (int i = 1; i < m + 1; i++) {
for (int j = 1; j < n + 1; j++) {
if (A.charAt(i - 1) == B.charAt(j - 1)) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[m][n];
}
}

由于二维数组默认的值是0, 所以不给f[ i ][ 0 ]  和 f[ 0 ][ i ]赋初始值也是可以的,简写为:

public class Solution {
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
public int longestCommonSubsequence(String A, String B) {
int n = A.length();
int m = B.length();
int f[][] = new int[n + 1][m + 1];
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
if(A.charAt(i - 1) == B.charAt(j - 1))
f[i][j] = f[i - 1][j - 1] + 1;
}
}
return f[n][m];
}
}

Longest Common Subsequence的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  3. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence & Substring & prefix

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. Dynamic Programming | Set 4 (Longest Common Subsequence)

    首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...

  7. Lintcode:Longest Common Subsequence 解题报告

    Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...

  8. UVA 10405 Longest Common Subsequence (dp + LCS)

    Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...

  9. [HackerRank] The Longest Common Subsequence

    This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...

随机推荐

  1. 符号(void *)何解?符号(void **)又何解??

    http://bbs.csdn.net/topics/70050852 对于多级指针或者数组,要掌握正确的识别方法:void*  是说: 这是一个指针,去掉一个(*)就是它所指向的,在这里是指向放vo ...

  2. BZOJ4690: Never Wait for Weights

    裸带权并查集. #include<cstdio> #define N 100005 int m,i,j,s,t,u,d[N],p[N]; char k; int find(int i){ ...

  3. WinForm------TextEdit控件去掉换行符

    //将换行转为空格 string str = this.DetailEdit.Text.Replace("\r\n"," ");

  4. re正则表达式7_{}

    curly brackets {} instead of one number, you can specify a range by writing a minimum,a comma,and a ...

  5. Java数据结构——双端链表

    //================================================= // File Name : FirstLastList_demo //------------ ...

  6. Java关键字——super

    使用super关键字可以从子类中调用父类中的构造方法.普通方法和属性 与this调用构造方法的要求一样,语句必须放在子类构造方法的首行 this和super都可以调用构造方法,但是两者不能同时出现,调 ...

  7. JVM 关闭钩子

    1.功能 在jvm中添加关闭钩子(Runtime.getRuntime().addShutdownHook(shutdownHook);)后,当jvm关闭时会执行系统中已经设置的所有通过该方法添加的钩 ...

  8. HTML5 web Form表单验证实例

    HTML5 web Form 的开发实例! index.html <!DOCTYPE html> <html> <head> <meta charset=&q ...

  9. virtualbox中centos系统配置nat+host only上网

    以前一直使用的是virtualbox的桥接模式,桥接模式的特点: 虚拟机和宿主机处于同等地位,就像是一台真实主机一样存在于局域网中,可以分配到一个网络中独立的IP. 虚拟机和宿主机之间能够互访. 如果 ...

  10. 再说vundle: 完全vim字符编程的四个必须插件 - zen coding 和emmet插件的使用

    一个常识: 基本上vim插件的配置文集都是放在对应插件目录 的/autoload/ plugin_name.vim 文件中的 有四个必要/必须的插件,实现vim完全的字符界面的编程: NERDTree ...