[POJ1765]November Rain
[POJ1765]November Rain
试题描述
Contemporary buildings can have very complicated roofs. If we take a vertical section of such a roof it results in a number of sloping segments. When it is raining the drops are falling down on the roof straight from the sky above. Some segments are completely exposed to the rain but there may be some segments partially or even completely shielded by other segments. All the water falling onto a segment as a stream straight down from the lower end of the segment on the ground or possibly onto some other segment. In particular, if a stream of water is falling on an end of a segment then we consider it to be collected by this segment.

For the purpose of designing a piping system it is desired to compute how much water is down from each segment of the roof. To be prepared for a heavy November rain you should count one liter of rain water falling on a meter of the horizontal plane during one second.
Task
Write a program that:
reads the description of a roof,
computes the amount of water down in one second from each segment of the roof,
writes the results.
输入
The first line of the input contains one integer n (1 <= n < = 40000) being the number of segments of the roof. Each of the next n lines describes one segment of the roof and contains four integers x1, y1, x2, y2 (0 <= x1, y1, x2, y2 < = 1000000, x1 < x2, y1<>y2) separated by single spaces. Integers x1, y1 are respectively the horizontal position and the height of the left end of the segment. Integers x2, y2 are respectively the horizontal position and the height of the right end of the segment. The segments don't have common points and there are no horizontal segments. You can also assume that there are at most 25 segments placed above any point on the ground level.
输出
The output consists of n lines. The i-th line should contain the amount of water (in liters) down from the i-th segment of the roof in one second.
输入示例
输出示例
数据规模及约定
见“输入”
题解
注意到每个竖直线上的交点不会超过 25 个,我们可以用扫描线后暴力乱搞。
每遇到一个屋檐的左端点就插入,遇到右端点就删除,在每次删除后处理天降雨的情况,即把最上面的屋檐集水量增加。
然后对于斜率为正的线段的左端点向下找到最靠近的一个屋檐向其连边,对于斜率为负的线段右端点同理。这样我们就可以得到一个 DAG,按拓扑序依次往后累加就好了(可以理解成 dp)。
这题有点卡常,需要离散一下。
#include <iostream>
#include <cstdio>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <cmath>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 40010
#define maxx 1000010
#define maxm 40010
#define eps 1e-6
int n, ca, cm, f[maxn];
struct Line {
int x1, y1, x2, y2;
double slop;
Line() {}
Line(int _1, int _2, int _3, int _4, double _5): x1(_1), y1(_2), x2(_3), y2(_4), slop(_5) {}
} ls[maxn];
struct Point {
double x, h, slop;
int id;
Point() {}
Point(double _1, double _2, double _3, int _4): x(_1), h(_2), slop(_3), id(_4) {}
bool operator < (const Point& t) const { return fabs(h - t.h) <= eps ? 0 : h < t.h; }
} ad[maxn], mi[maxn], tmp[30], ae[30];
bool cmp(Point a, Point b) { return a.x < b.x; } int m, head[maxn], to[maxm], next[maxm], ind[maxn], lst[maxn], cl;
void AddEdge(int a, int b) {
// printf("edge: %d -> %d\n", a, b);
to[++m] = b; next[m] = head[a]; head[a] = m;
ind[b]++;
return ;
} int vis[maxn], num[maxn<<1], cnt, A[maxn<<1];
int main() {
n = read();
for(int i = 1; i <= n; i++) {
int x1 = read(), y1 = read(), x2 = read(), y2 = read();
double slop = (double)(y2 - y1) / (x2 - x1);
ls[i] = Line(x1, y1, x2, y2, slop);
num[++cnt] = x1; num[++cnt] = x2;
}
sort(num + 1, num + cnt + 1);
cnt = unique(num + 1, num + cnt + 1) - num - 1;
for(int i = 1; i < cnt; i++) A[i] = num[i+1] - num[i];
for(int i = 1; i <= n; i++) {
ls[i].x1 = lower_bound(num + 1, num + cnt + 1, ls[i].x1) - num;
ls[i].x2 = lower_bound(num + 1, num + cnt + 1, ls[i].x2) - num;
ad[++ca] = Point(ls[i].x1, ls[i].y1, ls[i].slop, i);
mi[++cm] = Point(ls[i].x2, ls[i].y2, ls[i].slop, i);
}
sort(ad + 1, ad + ca + 1, cmp);
sort(mi + 1, mi + cm + 1, cmp); memset(vis, -1, sizeof(vis));
int ka = 1, km = 1, kt = 0;
for(int i = 1; i <= cnt; i++) {
for(int j = 1; j <= kt; j++) tmp[j].h += tmp[j].slop * A[i-1];
int ke = 0;
while(ad[ka].x == i) {
if(ad[ka].slop > 0.0) ae[++ke] = ad[ka];
tmp[++kt] = ad[ka];
ka++;
}
sort(tmp + 1, tmp + kt + 1);
for(int j = 1; j <= ke; j++) {
int k = lower_bound(tmp + 1, tmp + kt + 1, Point(-1, ae[j].h, -1, -1)) - tmp;
if(k == 1) continue; k--;
AddEdge(ae[j].id, tmp[k].id);
}
// for(int j = 1; j <= kt; j++) printf("%d ", tmp[kt].id); putchar('\n');
ke = 0;
while(mi[km].x == i) {
if(mi[km].slop < 0.0) ae[++ke] = mi[km];
vis[mi[km].id] = i;
km++;
}
// for(int j = 1; j <= kt; j++) printf("%d: %.2lf\n", tmp[j].id, tmp[j].h);
for(int j = 1; j <= ke; j++) {
int k = lower_bound(tmp + 1, tmp + kt + 1, Point(-1, ae[j].h, -1, -1)) - tmp;
// if(ae[j].id == 5) printf("here!!! %d %.2lf\n", k, ae[j].h);
if(k == 1) continue; k--;
AddEdge(ae[j].id, tmp[k].id);
}
for(int k = 1; k <= kt; k++)
if(vis[tmp[k].id] == i) {
swap(tmp[k], tmp[kt]);
kt--; k--;
}
sort(tmp + 1, tmp + kt + 1);
f[tmp[kt].id] += A[i];
// printf("add_id: %d %d\n", tmp[kt].id, A[i]);
} for(int i = 1; i <= n; i++) if(!ind[i]) lst[++cl] = i;
int i = 1;
for(; i <= cl; i++)
for(int e = head[lst[i]]; e; e = next[e]) {
ind[to[e]]--;
if(!ind[to[e]]) lst[++cl] = to[e];
}
for(int i = 1; i <= n; i++) {
int u = lst[i];
for(int e = head[u]; e; e = next[e])
f[to[e]] += f[u];
} for(int i = 1; i <= n; i++) printf("%d\n", f[i]); return 0;
}
[POJ1765]November Rain的更多相关文章
- POJ 1765 November Rain
题目大意: 有一些屋顶,相当于一些线段(不想交). 问每一条线段能够接到多少水,相对较低的屋顶能够接到高屋顶留下的水(如题图所看到的).因为y1!=y2,所以保证屋顶是斜的. 解题思路: 扫描线,由于 ...
- 【Go入门教程6】interface(interface类型、interface值、空interface{}、嵌入interface、反射)
interface Go语言里面设计最精妙的应该算interface,它让面向对象,内容组织实现非常的方便,当你看完这一章,你就会被interface的巧妙设计所折服. 什么是interface 简单 ...
- Go语言interface详解
interface Go语言里面设计最精妙的应该算interface,它让面向对象,内容组织实现非常的方便,当你看完这一章,你就会被interface的巧妙设计所折服. 什么是interface 简单 ...
- GoLang之方法与接口
GoLang之方法与接口 Go语言没有沿袭传统面向对象编程中的诸多概念,比如继承.虚函数.构造函数和析构函数.隐藏的this指针等. 方法 Go 语言中同时有函数和方法.方法就是一个包含了接受者的函数 ...
- Go 接口(interface)
文章转载地址:https://www.flysnow.org/2017/04/03/go-in-action-go-interface.html 1.什么是 interface? 简单的说,i ...
- Ext JS 4 的类系统
前言 我们知道,JavaScript中没有真正的类,它是一种面向原型的语言 .这种语言一个强大的特性就是灵活,实现一个功能可以有很多不同的方式,用不同的编码风格和技巧.但随之也带来了代码的不可预测和难 ...
- 【Go入门教程8】interface(interface类型、interface值、空interface{}、嵌入interface、反射)
interface Go语言里面设计最精妙的应该算interface,它让面向对象,内容组织实现非常的方便,当你看完这一章,你就会被interface的巧妙设计所折服. 什么是interface 简单 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- GO方法与接口
Go语言没有沿袭传统面向对象编程中的诸多概念,比如继承.虚函数.构造函数和析构函数.隐藏的this指针等. 方法 Go 语言中同时有函数和方法.方法就是一个包含了接受者(receiver)的函数,re ...
随机推荐
- Linux 中,如何显示 (gcc)make时实际执行命令
问题: 调试编译问题,如何获取,GCC(或许make)时,实际编译器和链接器正在执行的命令? 解决方法: 方法一:通用方法 使用dry run,如下 $ make -n 这将显示make 命令正在试图 ...
- linux程序处理po多语言的两种脚本配置方式
1.在configure.ac里面配置ALL_LINGUAS,然后调用AM_GLIB_GNU_GETTEXT 2.在po目录下面放置LINGUAS文件,由gettextize来生成并处理
- Windows 无法自动将 IP 协议堆栈绑定到网络适配器。解
Windows 无法自动将 IP 协议堆栈绑定到网络适配器.解 昨天断网了,所以把珍藏已久的无线网卡拿出来蹭网.我系统是Windows 7 但是装上去东显示已启用,就是用不了,用windows诊断是 ...
- Starling Tutorial
http://www.hsharma.com/tutorials/starting-with-starling-ep-1-intro-setup/
- 其他系统与ecshop的会员整合
步骤一:整合两个的会员数据 用软件Navicat 的 "导入向导"功能,导入你的原数据类型(sql,mdb,db)我的是mdb类型.下一步选择你原有的会员字段“user”.再进行下 ...
- 一个label里有个链接,点这个特别颜色的一些字,会执行一些操作
这个label在sb中或者纯代码创建的时候要是TTTAttributedLabel 然后进行相关设置
- 分享一个控制JS 浏览器缓存的解决办法。
JS 缓存的问题一直都是我们又爱又恨的东西.也是我们比较头痛的问题, 一方面为了提高网站响应速度,减少服务器的负担,和节省带宽,将需要将静态资源缓存在客户端, 但是另一方面,当js 文件有改动的时候 ...
- owin中间件
public class HelloWorldOptions { public HelloWorldOptions() { IncludeTimestamp = true; Name = " ...
- 【转】SPDY协议
SPDY协议 - v3 原文:SPDY Protocol - Draft 3 翻译:邱鹏滔(QQ: 95350530,主页:www.fireflysource.com) 1 概述 HTTP协议的瓶颈在 ...
- Apache解析漏洞详解
很多次听到人说apache的“解析漏洞”了,正好今天又有人问,那就简单科普一下这个“解析漏洞”是何物. 先来看测试过程和结果的对比吧. 结果一 首先,我安装了apache 2.x版本,同时以modul ...